258 research outputs found

    Secrecy capacity of a class of orthogonal relay eavesdropper channels

    Get PDF
    The secrecy capacity of relay channels with orthogonal components is studied in the presence of an additional passive eavesdropper node. The relay and destination receive signals from the source on two orthogonal channels such that the destination also receives transmissions from the relay on its channel. The eavesdropper can overhear either one or both of the orthogonal channels. Inner and outer bounds on the secrecy capacity are developed for both the discrete memoryless and the Gaussian channel models. For the discrete memoryless case, the secrecy capacity is shown to be achieved by a partial decode-and-forward (PDF) scheme when the eavesdropper can overhear only one of the two orthogonal channels. Two new outer bounds are presented for the Gaussian model using recent capacity results for a Gaussian multi-antenna point-to-point channel with a multi-antenna eavesdropper. The outer bounds are shown to be tight for two sub-classes of channels. The first sub-class is one in which the source and relay are clustered and the and the eavesdropper receives signals only on the channel from the source and the relay to the destination, for which the PDF strategy is optimal. The second is a sub-class in which the source does not transmit to the relay, for which a noise-forwarding strategy is optimal.Comment: Submitted to Eurasip Journal on Wireless Communications and Networking special issue on Wireless physical layer security, Dec. 2008, Revised Jun. 200

    Secrecy capacity of a class of orthogonal relay eavesdropper channels

    Get PDF
    The secrecy capacity of relay channels with orthogonal components is studied in the presence of an additional passive eavesdropper node. The relay and destination receive signals from the source on two orthogonal channels such that the destination also receives transmissions from the relay on its channel. The eavesdropper can overhear either one or both of the orthogonal channels. Inner and outer bounds on the secrecy capacity are developed for both the discrete memoryless and the Gaussian channel models. For the discrete memoryless case, the secrecy capacity is shown to be achieved by a partial decode-and-forward (PDF) scheme when the eavesdropper can overhear only one of the two orthogonal channels. Two new outer bounds are presented for the Gaussian model using recent capacity results for a Gaussian multi-antenna point-to-point channel with a multi-antenna eavesdropper. The outer bounds are shown to be tight for two sub-classes of channels. The first sub-class is one in which the source and relay are clustered and the and the eavesdropper receives signals only on the channel from the source and the relay to the destination, for which the PDF strategy is optimal. The second is a sub-class in which the source does not transmit to the relay, for which a noise-forwarding strategy is optimal.Comment: Submitted to Eurasip Journal on Wireless Communications and Networking special issue on Wireless physical layer security, Dec. 2008, Revised Jun. 200

    Cooperation with an Untrusted Relay: A Secrecy Perspective

    Full text link
    We consider the communication scenario where a source-destination pair wishes to keep the information secret from a relay node despite wanting to enlist its help. For this scenario, an interesting question is whether the relay node should be deployed at all. That is, whether cooperation with an untrusted relay node can ever be beneficial. We first provide an achievable secrecy rate for the general untrusted relay channel, and proceed to investigate this question for two types of relay networks with orthogonal components. For the first model, there is an orthogonal link from the source to the relay. For the second model, there is an orthogonal link from the relay to the destination. For the first model, we find the equivocation capacity region and show that answer is negative. In contrast, for the second model, we find that the answer is positive. Specifically, we show by means of the achievable secrecy rate based on compress-and-forward, that, by asking the untrusted relay node to relay information, we can achieve a higher secrecy rate than just treating the relay as an eavesdropper. For a special class of the second model, where the relay is not interfering itself, we derive an upper bound for the secrecy rate using an argument whose net effect is to separate the eavesdropper from the relay. The merit of the new upper bound is demonstrated on two channels that belong to this special class. The Gaussian case of the second model mentioned above benefits from this approach in that the new upper bound improves the previously known bounds. For the Cover-Kim deterministic relay channel, the new upper bound finds the secrecy capacity when the source-destination link is not worse than the source-relay link, by matching with the achievable rate we present.Comment: IEEE Transactions on Information Theory, submitted October 2008, revised October 2009. This is the revised versio

    On Secure Transmission over Parallel Relay Eavesdropper Channel

    Full text link
    We study a four terminal parallel relay-eavesdropper channel which consists of multiple independent relay-eavesdropper channels as subchannels. For the discrete memoryless case, we establish inner and outer bounds on the rate-equivocation region. For each subchannel, secure transmission is obtained through one of the two coding schemes at the relay: decoding-and-forwarding the source message or confusing the eavesdropper through noise injection. The inner bound allows relay mode selection. For the Gaussian model we establish lower and upper bounds on the perfect secrecy rate. We show that the bounds meet in some special cases, including when the relay does not hear the source. We illustrate the analytical results through some numerical examples.Comment: 8 pages, Presented at the Forty-Eighth Annual Allerton Conference on Communication, Control, and Computing, September 29 - October 1, 2010, Monticello, IL, US

    Cooperative Jamming for Secure Communications in MIMO Relay Networks

    Full text link
    Secure communications can be impeded by eavesdroppers in conventional relay systems. This paper proposes cooperative jamming strategies for two-hop relay networks where the eavesdropper can wiretap the relay channels in both hops. In these approaches, the normally inactive nodes in the relay network can be used as cooperative jamming sources to confuse the eavesdropper. Linear precoding schemes are investigated for two scenarios where single or multiple data streams are transmitted via a decode-and-forward (DF) relay, under the assumption that global channel state information (CSI) is available. For the case of single data stream transmission, we derive closed-form jamming beamformers and the corresponding optimal power allocation. Generalized singular value decomposition (GSVD)-based secure relaying schemes are proposed for the transmission of multiple data streams. The optimal power allocation is found for the GSVD relaying scheme via geometric programming. Based on this result, a GSVD-based cooperative jamming scheme is proposed that shows significant improvement in terms of secrecy rate compared to the approach without jamming. Furthermore, the case involving an eavesdropper with unknown CSI is also investigated in this paper. Simulation results show that the secrecy rate is dramatically increased when inactive nodes in the relay network participate in cooperative jamming.Comment: 30 pages, 7 figures, to appear in IEEE Transactions on Signal Processin

    Secure Communication over Parallel Relay Channel

    Full text link
    We investigate the problem of secure communication over parallel relay channel in the presence of a passive eavesdropper. We consider a four terminal relay-eavesdropper channel which consists of multiple relay-eavesdropper channels as subchannels. For the discrete memoryless model, we establish outer and inner bounds on the rate-equivocation region. The inner bound allows mode selection at the relay. For each subchannel, secure transmission is obtained through one of two coding schemes at the relay: decoding-and-forwarding the source message or confusing the eavesdropper through noise injection. For the Gaussian memoryless channel, we establish lower and upper bounds on the perfect secrecy rate. Furthermore, we study a special case in which the relay does not hear the source and show that under certain conditions the lower and upper bounds coincide. The results established for the parallel Gaussian relay-eavesdropper channel are then applied to study the fading relay-eavesdropper channel. Analytical results are illustrated through some numerical examples.Comment: To Appear in IEEE Transactions on Information Forensics and Securit

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Truthful Mechanisms for Secure Communication in Wireless Cooperative System

    Full text link
    To ensure security in data transmission is one of the most important issues for wireless relay networks, and physical layer security is an attractive alternative solution to address this issue. In this paper, we consider a cooperative network, consisting of one source node, one destination node, one eavesdropper node, and a number of relay nodes. Specifically, the source may select several relays to help forward the signal to the corresponding destination to achieve the best security performance. However, the relays may have the incentive not to report their true private channel information in order to get more chances to be selected and gain more payoff from the source. We propose a Vickey-Clark-Grove (VCG) based mechanism and an Arrow-d'Aspremont-Gerard-Varet (AGV) based mechanism into the investigated relay network to solve this cheating problem. In these two different mechanisms, we design different "transfer payment" functions to the payoff of each selected relay and prove that each relay gets its maximum (expected) payoff when it truthfully reveals its private channel information to the source. And then, an optimal secrecy rate of the network can be achieved. After discussing and comparing the VCG and AGV mechanisms, we prove that the AGV mechanism can achieve all of the basic qualifications (incentive compatibility, individual rationality and budget balance) for our system. Moreover, we discuss the optimal quantity of relays that the source node should select. Simulation results verify efficiency and fairness of the VCG and AGV mechanisms, and consolidate these conclusions.Comment: To appear in IEEE Transactions on Wireless Communication
    • …
    corecore