219 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    On the Calculation of the Incomplete MGF with Applications to Wireless Communications

    Get PDF
    (c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. DOI: 10.1109/TCOMM.2016.2626440The incomplete moment generating function (IMGF) has paramount relevance in communication theory, since it appears in a plethora of scenarios when analyzing the performance of communication systems. We here present a general method for calculating the IMGF of any arbitrary fading distribution. Then, we provide exact closed-form expressions for the IMGF of the very general κ-μ shadowed fading model, which includes the popular κ-μ, η-μ, Rician shadowed, and other classical models as particular cases. We illustrate the practical applicability of this result by analyzing several scenarios of interest in wireless communications: 1) physical layer security in the presence of an eavesdropper; 2) outage probability analysis with interference and background noise; 3) channel capacity with side information at the transmitter and the receiver; and 4) average bit-error rate with adaptive modulation, when the fading on the desired link can be modeled by any of the aforementioned distributions.Universidad de Málaga. Campus de Execelencia Internacional. Andalucía Tech
    corecore