17,051 research outputs found

    TVWS policies to enable efficient spectrum sharing

    Get PDF
    The transition from analogue to the Digital Terrestrial Television (DTV) in Europe is planned to be completed by the end of the year 2012. The DTV spectrum allocation is such that there are a number of TV channels which cannot be used for additional high power broadcast transmitters due to mutual interference and hence are left unused within a given geographical location, i.e. the TV channels are geographically interleaved. The use of geographically interleaved spectrum provides for the so-called TV white spaces (TVWS) an opportunity for deploying new wireless services. The main objective of this paper is to present the spectrum policies that are suitable for TVWS at European level, identified within the COGEU project. The COGEU project aims the efficient exploitation of the geographical interleaved spectrum (TVWS). COGEU is an ICT collaborative project supported by the European Commission within the 7th Framework Programme. Nine partners from seven EU countries representing academia, research institutes and industry are involved in the project. The COGEU project is a composite of technical, business, and regulatory/policy domains, with the objective of taking advantage of the TV digital switchover by developing cognitive radio systems that leverage the favorable propagation characteristics of the UHF broadcast spectrum through the introduction and promotion of real-time secondary spectrum trading and the creation of new spectrum commons regimes. COGEU will also define new methodologies for compliance testing and certification of TVWS equipment to ensure non-interference coexistence with the DVB-T European standard. The innovation brought by COGEU is the combination of cognitive access to TV white spaces with secondary spectrum trading mechanisms.telecommunications,spectrum management,secondary spectrum market,regulation,TV white spaces,cognitive radio

    Market Based Approaches for Dynamic Spectrum Assignment

    Get PDF
    Abstract—Much of the technical literature on spectrum sharing has been on developing technologies and systems for non-cooperative) opportunistic use. In this paper, we situate this approach to secondary spectrum use in a broader context, one that includes cooperative approaches to Dynamic Spectrum Access (DSA). In this paper, we introduce readers to this broader approach to DSA by contrasting it with non-cooperative sharing (opportunistic use), surveying relevant literature, and suggesting future directions for researc

    HySIM: A Hybrid Spectrum and Information Market for TV White Space Networks

    Full text link
    We propose a hybrid spectrum and information market for a database-assisted TV white space network, where the geo-location database serves as both a spectrum market platform and an information market platform. We study the inter- actions among the database operator, the spectrum licensee, and unlicensed users systematically, using a three-layer hierarchical model. In Layer I, the database and the licensee negotiate the commission fee that the licensee pays for using the spectrum market platform. In Layer II, the database and the licensee compete for selling information or channels to unlicensed users. In Layer III, unlicensed users determine whether they should buy the exclusive usage right of licensed channels from the licensee, or the information regarding unlicensed channels from the database. Analyzing such a three-layer model is challenging due to the co-existence of both positive and negative network externalities in the information market. We characterize how the network externalities affect the equilibrium behaviours of all parties involved. Our numerical results show that the proposed hybrid market can improve the network profit up to 87%, compared with a pure information market. Meanwhile, the achieved network profit is very close to the coordinated benchmark solution (the gap is less than 4% in our simulation).Comment: This manuscript serves as the online technical report of the article published in IEEE International Conference on Computer Communications (INFOCOM), 201

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Dynamic Geospatial Spectrum Modelling: Taxonomy, Options and Consequences

    Get PDF
    Much of the research in Dynamic Spectrum Access (DSA) has focused on opportunistic access in the temporal domain. While this has been quite useful in establishing the technical feasibility of DSA systems, it has missed large sections of the overall DSA problem space. In this paper, we argue that the spatio-temporal operating context of specific environments matters to the selection of the appropriate technology for learning context information. We identify twelve potential operating environments and compare four context awareness approaches (on-board sensing, databases, sensor networks, and cooperative sharing) for these environments. Since our point of view is overall system cost and efficiency, this analysis has utility for those regulators whose objectives are reducing system costs and enhancing system efficiency. We conclude that regulators should pay attention to the operating environment of DSA systems when determining which approaches to context learning to encourage

    Market Mechanisms Towards Secondary Spectrum Usage

    Get PDF
    Widespread adoption of smartphones, tablets and other smart devices has resulted in mobile operators (MOs) making a transition from voice to data centric business model. As a consequence there has been an increase in demand for radio spectrum. Spectrum availability in the future can be a cause of concern, the main reason of which is being attributed to the traditional and inflexible approach towards spectrum management. Hence it is required to overhaul the existing spectrum management techniques and adopt those models which aim at higher spectrum utilization. As part of our research methodology we first perform a state-of-the-art review on secondary usage of radio spectrum. We observe that most research assumes a clean slate approach towards the emergence of secondary spectrum markets which are typically designed with an underlying assumption of participating actors being of homogeneous type. In contrast with above we take an evolutionary approach while designing market mechanisms towards heterogeneous secondary usage of spectrum. The evolution of trading markets is reflected in the incremental steps used in our research, i.e. starting from Wireless Fidelity (Wi-Fi IEEE 802.11) capacity markets, followed by super Wi-Fi (IEEE 802.11af) capacity markets and finally TV White Spaces (TVWS) spectrum leasing markets. We make use of Value Network Configuration (VNC) methodology for illustrating the design of market mechanism and further evaluate the designed mechanism using Agent Based Modeling (ABM). Based on our simulation results we observe that a generic trade-off exist between the length of lease time, trade facilitation cost and the extent of trading activity within the markets. We also observe that there exists an optimal range of lease time for which all the market players find themselves in economically favourable situation. We compare super Wi-Fi capacity markets and TVWS spectrum leasing markets over performance of MOs and TV broadcasters and according to our evaluation local area strategy seems to offer more benefits for TVWS spectrum usage

    Enforcement in Dynamic Spectrum Access Systems

    Get PDF
    The spectrum access rights granted by the Federal government to spectrum users come with the expectation of protection from harmful interference. As a consequence of the growth of wireless demand and services of all types, technical progress enabling smart agile radio networks, and on-going spectrum management reform, there is both a need and opportunity to use and share spectrum more intensively and dynamically. A key element of any framework for managing harmful interference is the mechanism for enforcement of those rights. Since the rights to use spectrum and to protection from harmful interference vary by band (licensed/unlicensed, legacy/newly reformed) and type of use/users (primary/secondary, overlay/underlay), it is reasonable to expect that the enforcement mechanisms may need to vary as well.\ud \ud In this paper, we present a taxonomy for evaluating alternative mechanisms for enforcing interference protection for spectrum usage rights, with special attention to the potential changes that may be expected from wider deployment of Dynamic Spectrum Access (DSA) systems. Our exploration of how the design of the enforcement regime interacts with and influences the incentives of radio operators under different rights regimes and market scenarios is intended to assist in refining thinking about appropriate access rights regimes and how best to incentivize investment and growth in more efficient and valuable uses of the radio frequency spectrum
    • 

    corecore