672 research outputs found

    Simulation and control of stationary crossflow vortices

    Get PDF
    Turbulent flow and transition are some of the most important phenomena of fluid mechanics and aerodynamics and represent a challenging engineering problem for aircraft manufacturers looking to improve aerodynamic efficiency. Laminar flow technology has the potential to provide a significant reduction to aircraft drag by manipulating the instabilities within the laminar boundary layer to achieve a delay in transition to turbulence. Currently prediction and simulation of laminar-turbulent transition is con- ducted using either a low-fidelity approach involving the stability equations or via a full Direct Numerical Simulation (DNS). The work in this thesis uses an alternative high-fidelity simulation method that aims to bridge the gap between the two simulation streams. The methodology uses an LES approach with a low-computational cost sub-grid scale model (WALE) that has inherent ability to reduce its turbulent viscosity contribution to zero in laminar regions. With careful grid spacing the laminar regions can be explicitly modelled as an unsteady Navier-Stokes simulation while the turbulent and transitional regions are simulated using LES. The methodology has been labelled as an unsteady Navier-Stokes/Large Eddy Simulation (UNS/LES) approach. Two test cases were developed to test the applicability of the method to simulate and control the crossflow instability. The first test case replicated the setup from an experiment that ran at a chord-based Reynolds number of 390, 000. Two methods were used to generate the initial disturbance for the crossflow vortices, firstly using a continuous suction hole and secondly an isolated roughness element. The results for this test case showed that the approach was capable of modelling the full transition process, from explicitly modelling the growth of the initial amplitude of the disturbances to final breakdown to turbulence. Results matched well with the available experimental data. The second test case replicated an experimental setup using a custom- designed aerofoil run at a chord-based Reynolds number of 2.4 million. The test case used Distributed Roughness Elements (DRE) to induce crossflow vortices at both a critical and a control wavelength. By forcing the crossflow vortices at a stable (control) wavelength a delay in laminar-turbulent transition can be achieved. The results showed that the UNS/LES approach was capable of capturing the initial disturbance amplitudes due to the roughness elements and their growth rates matched well with experimental data. Finally, downstream a transitional region was assessed with low-freestream turbulence provided using a modified Synthetic Eddy Method (SEM). The full laminar-turbulent transition pro- cess was simulated and results showed significant promise. In conclusion, the method employed in this thesis showed promising results and demonstrated a possible route to high-fidelity transition simulation run at more realistic flow conditions and geometries than DNS. Further work and validation is required to test the secondary instability region and the final breakdown to turbulence

    Structure Identification Within a Transitioning Swept-Wing Boundary Layer

    Get PDF
    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use Linear Stochastic Estimation (LSE) and Proper Orthogonal Decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using streamwise spatial POD solutions which isolate the growth of the primary and secondary instability mechanisms in the first and second modes, respectively. Temporal evolutions of dominant POD modes in all measured fields are calculated. These scalar POD coefficients contain the integrated characteristics of the entire field, greatly reducing the amount of data to characterize the instantaneous field. These modes may then be used to train future flow control algorithms based on neural networks

    Effect of 3D Roughness Patch on Instability Amplification in a Supersonic Boundary Layer

    Get PDF
    Surface roughness is known to have a substantial impact on the aerothermodynamic loading of high-speed vehicles, particularly via its influence on the laminar-turbulent transition process within the boundary layer. Numerical simulations are performed to investigate the effects of a distributed region of densely packed, sinusoidal shape roughness elements on a Mach 3.5 flat plate boundary layer for flow conditions corresponding to the planned conditions of an upcoming experiment in the Mach 3.5 Supersonic Low Disturbance Tunnel at the NASA Langley Research Center. Analysis of convective instabilities in the wake of the roughness patch was reported in a previous paper and the current work extends that analysis to instability amplification across the length of the roughness patch. Quasiparallel stability analysis of the modified boundary layer flow over the patch indicates two dominant families of unstable disturbances, namely, a group of high frequency modes that amplify in localized regions along the roughness patch and another group of low frequency modes that have smaller peak amplification rates but amplify steadily both above the roughness patch and in the wake region behind it. The results suggest that the amplification factors associated with the high-frequency modes are sufficiently low, at least for the roughness patches considered in this paper, so that these modes are unlikely to have a major influence on the transition process. The amplification of the low-frequency modes within the region of the roughness patch is further quantified via direct numerical simulations. Results confirm the strongly destabilizing influence of the roughness patch on the first mode instabilities, yielding an N-factor increment of N 3.6 for a roughness patch length of eight wavelengths

    Aeronautical engineering: A continuing bibliography with indexes (supplement 269)

    Get PDF
    This bibliography lists 539 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Environmental Influences on Crossflow Instability

    Get PDF
    The laminar-to-turbulent transition process in swept-wing boundary layers is often dominated by an inflectional instability arising from crossflow. It is now known that freestream turbulence and surface roughness are two of the key disturbance sources in the crossflow instability problem. Recent experimental findings have suggested that freestream turbulence of low intensity (less than 0.2%) may have a larger influence on crossflow instability than was previously thought. The present work involves experimental measurement of stationary and traveling crossflow mode amplitudes in freestream turbulence levels between 0.02% and 0.2%. A 1.83 m chord, 45-degree swept-wing model is used in the Klebanoff-Saric Wind Tunnel to perform these experiments. The turbulence intensity and length scales are documented. Although a significant amount of research on the role of turbulence has been completed at higher turbulence levels, comparatively little has been done at the low levels of the present experiments, which more closely reflect the flight environment. It is found that growth of the traveling crossflow mode is highly dependent on small changes to the freestream turbulence. Additionally, previously studied attenuation of saturated stationary disturbance amplitudes is observed at these low turbulence levels. The extent of laminar flow is also observed to decrease in moderate freestream turbulence

    Aeronautical engineering. A continuing bibliography with indexes, supplement 102

    Get PDF
    This bibliography lists 326 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1978

    Research in Natural Laminar Flow and Laminar-Flow Control, part 1

    Get PDF
    Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research
    corecore