600 research outputs found

    Modeling, control and design of AC microgrids in islanded mode

    Get PDF
    Tesi per compendi de publicacions, amb diferents seccions retallades pels dret de l'editorPremi Extraordinari de Doctorat, promoció 2018-2019. Àmbit de les TICThe present doctoral thesis is focused on the analysis and design of control strategies for the secondary control layer of islanded AC microgrids without the use of communications. The work is submitted as a compendium of publications, composed by journals and international conference papers. The first contribution is a control strategy for the secondary control layer based on a switchable configuration, that does not require the use of communications. For stability analysis purposes, a closed-loop system modeling is presented, which is also used to determine design considerations for the control parameters. The second contribution is a complementary control strategy that improves the frequency regulation of the previous proposed control, using a dynamic droop gain in the primary layer. For this purpose, a time protocol that drives the variable parameters is proposed which guarantees an effectively reduction of the maximum frequency error without relying on complex techniques, maintaining the simplicity of the basis strategy and the non-use of communications. The third contribution is a multi-layer hierarchical control scheme that is composed by a droop-based primary layer, a time-driven secondary layer and an optimized power dispatch tertiary layer. The proposed control guarantees an excellent performance in terms of frequency restoration and power sharing. The fourth contribution is an improved secondary control layer strategy without communications, which presents superior operating performance compared with the previous proposals. The scheme is based on a event-driven operation of a parameter-varying filter which ensures perfect active power sharing and controllable accuracy for frequency restoration. A complete modeling that considers the topology of the MG and the electrical interaction between the DGs is derived for the stability analysis and to determine design guidelines for the key control parameters. For the purpose of analyzing and verifying the operational performance of the control schemes, an experimental MG was implemented, where selected tests were carried out. The obtained results are discussed and its relation with the doctoral thesis objectives analyzed. The thesis ends presenting conclusions and future research lines.La presente tesis doctoral se enfoca en el análisis y diseño de estrategias de control para la capa de control secundaria en microrredes aisladas de corriente alterna, sin el uso de comunicaciones. El trabajo se presenta en la modalidad de compendio, por lo que está compuesto por publicaciones previamente aceptadas en revistas y congresos científicos internacionales. La primera contribución es un estrategia de control para la capa secundaria basada en una configuración conmutable, que no requiere el uso de comunicaciones. Con el propósito de analizar la estabilidad, se presenta el modelado del sistema de lazo cerrado, que también es usado para determinar reglas de diseño de los parámetros de control. La segunda contribución es una estrategia de control complementaria que mejora la regulación de frecuencia de la propuesta anterior, usando una ganancia dinámica en la capa de control primaria. Se propone la variación de los parámetros siguiendo un protocolo de tiempo, garantizando la reducción del error máximo de frecuencia sin depender de técnicas complejas, manteniendo la simplicidad de la estrategia base y sin requerir comunicaciones. La tercera contribución es un esquema de control jerárquico compuesto por una capa primaria basada en el método de la pendiente, una capa secundaria controlada por un protocolo de tiempo y una capa terciaria que optimiza el despacho de potencias. El control propuesto garantiza un excelente desempeño en términos de la regulación de la frecuencia y la compartición de potencias. La cuarta contribución es una estrategia de control para la capa secundaria que no usa comunicaciones, la cual presenta un comportamiento operativo superior comparado con las propuestas anteriores. El esquema está basado en una operación controlada por eventos, de un filtro con parámetros variables que garantiza una perfecta compartición de potencias y una precisa restauración de frecuencia. Además, para el análisis de la estabilidad y la determinación de pautas de diseño de los parámetros se presenta un modelo que considera la topología de la microrred y las interacciones eléctricas de los generadores. Con el objetivo de analizar y verificar el desempeño operativo de los esquemas de control, se implementó una microrred experimental donde se llevaron a cabo las pruebas requeridas. Se discutieron los resultados obtenidos y se analizó su relación con los objetivos de la tesis doctoral. El documento termina presentado las conclusiones así como futuras líneas de investigaciónAward-winningPostprint (published version

    Development of a smart transformer to control the power exchange of a microgrid

    Get PDF
    A smart transformer enables to control the power exchange between a microgrid and the utility network by controlling the voltage at the microgrid side within certain limits. The distributed generation units in the microgrid are equipped with a voltage-based droop control strategy. This controller reacts on the voltage change, making the smart transformer an element that controls power exchange without the need for communication to other elements in the microgrid. To build a smart transformer, several concepts are possible. In a smart transformer with continuous turns ratio, hereafter referred to as continuous smart transformer, the transformer's microgrid-side voltage can be controlled without voltage steps and the accuracy of the voltage control can be very high. The voltage control of a smart transformer with discrete turns ratio, hereafter referred to as discrete smart transformer, is less accurate, as the output voltage is regulated between several discrete values. In this paper, the development of a continuous and discrete smart transformer will be elaborated. Their validity will be proven by implementing these smart transformers in an experimental test setup. Also, some concepts to improve the control accuracy will be proposed

    Active power sharing and frequency regulation in inverter-based islanded microgrids subject to clock drifts, damage in power links and loss of communications

    Get PDF
    Tesi en modalitat de compendi de publicacions; hi ha diferents seccions retallades per drets de l'editorMicrogrids (MGs) are small-scale power systems containing storage elements, loads and distributed generators that are interfaced with the electric network via power electronic inverters. When an MG is in islanded mode, its dynamics are no longer dominated by the main grid. Then, inverters, driven by digital processors that may exchange data over digital communication, must act as voltage source inverters (VSIs) to take coordinated actions to ensure power quality and supply. The scope of this thesis is bounded to control strategies for active power sharing and frequency regulation in islanded MGs. The focus is on the analysis of prototype control policies when operating conditions are no longer ideal. In particular, the thesis covers the effect that a) clock drifts of digital processors, b) damage in power transmission lines, and c) failures in digital communications have in control performance. The work is submitted as a compendium of publications, including journal and international conference papers, where two main areas of research can be distinguished. The first area refers to the analysis of the effect that clock drifts have on frequency regulation and active power sharing. VSIs digital processors are equipped with oscillators, which run at not necessarily identical frequencies. As consequence, the local clocks in the physically distributed VSIs may differ. This part, reported in two conference papers and one journal paper, investigates state-of-the-art control policies when clocks of the computational devices drift. The contributions related to this part are a) the reformulation of existing control policies in terms of clock drifts, b) the steady-state analysis of these policies that offers analytical expressions to quantify the impact that drifts have on frequency and active power equilibrium points, c) the closed-loop model capable of accommodating all the policies, d) the stability analysis of the equilibrium points, and e) the experimental results. The second area copes with the analysis of the effect that electrical and communication failures have on frequency regulation and active power sharing. This investigation focuses on distributed/cooperative control policies where each inverter control action is computed using both local measures and data received from other inverters within the MG. This part, reported in one conference paper and two journal papers, investigates two control policies when the considered failures in terms of damage in power links and/or loss of communication between inverters provoke partitions within the MG. The contributions related to this part are a) the formulation of the MG as two connected graphs corresponding to the electrical and communication networks where both type of failures lead to disconnected electrical/communication sub-graphs, named partitions, that co-exist within the MG, b) the closed-loop model integrating the two graph Laplacian matrices, c) the stability analysis that identifies which type of partitions may lead to MG instability, d) the steady-state analysis that indicates how to compute the equilibrium points for the case of stable dynamics, e) a new control strategy based on switched control principles that permits avoiding the instability scenario, and f) the experimental results. For the purpose of verifying the operational performance of the analytical results, diverse experiments on a laboratory MG have been performed. The outcomes obtained are discussed and analyzed in terms of the objectives sought. Finally, conclusions and future research lines complete the thesis.Las microredes (MG) son sistemas de energía a pequeña escala que contienen elementos de almacenamiento, cargas y generadores distribuidos que están conectados con la red eléctrica a través de inversores de potencia. Cuando una MG está en modo aislado, su dinámica no está dominada por la red principal. Así, los inversores, comandados por procesadores digitales que pueden intercambiar información a través de comunicaciones digitales, deben actuar como fuentes de voltaje para ejecutar acciones coordinadas que garanticen el suministro de energía. Esta tesis se enmarca dentro de estrategias de control de última generación para compartir potencia activa y regular frecuencia en MG aisladas basadas en inversores. Su enfoque se centra en analizar estas políticas cuando las condiciones de operación no son ideales. En particular, la tesis cubre el efecto que a) desviaciones del reloj de los procesadores digitales, b) daños en las líneas de transmisión de energía, y c) fallas en las comunicaciones digitales, provocan en el rendimiento de control. El trabajo se presenta como un compendio que incluye publicaciones de revistas y de conferencias internacionales, donde se pueden distinguir dos temas principales de investigación. El primer tema comprende el análisis del efecto que tienen las desviaciones de reloj sobre la regulación de frecuencia y la compartición de potencia activa. Los procesadores de los inversores están equipados con osciladores que funcionan a frecuencias no necesariamente idénticas. Como consecuencia, los relojes locales en los inversores distribuidos físicamente, pueden diferir. Esta parte, descrita a través de dos artículos de conferencia y uno de revista, analiza el comportamiento de las políticas de control cuando los relojes de los dispositivos computacionales se desvían. Las contribuciones relacionadas con este tema son a) reformulación de las políticas de control de última generación en términos de desviaciones de reloj, b) análisis de estado estacionario de estas estrategias que ofrece expresiones analíticas para cuantificar el impacto que las desviaciones de reloj tienen sobre los puntos de equilibrio de frecuencia y potencia activa, c) modelo de lazo cerrado adaptable a todas las políticas, d) análisis de estabilidad de los puntos de equilibrio, y e) resultados experimentales. El segundo tema hace frente al análisis del efecto que las fallas eléctricas y de comunicaciones tienen sobre la regulación de frecuencia y el uso compartido de potencia activa. Esta parte se centra en políticas de control distribuido/cooperativo donde cada acción de control del inversor se calcula utilizando medidas locales y datos recibidos de otros inversores de la MG. Esta parte, descrita a través de un artículo de conferencia y dos de revista, investiga dos políticas de control cuando particiones en la MG son provocadas por daños en los enlaces de alimentación y/o por pérdida de comunicación entre inversores. Las contribuciones relacionadas con este tema son a) formulación de la MG como dos grafos correspondientes a las redes eléctrica y de comunicación donde ambos tipos de fallas conducen a sub-grafos eléctricos/comunicacionales desconectados, llamados particiones, que coexisten dentro de la MG, b) modelo de lazo cerrado que integra las matrices Laplacianas de los dos grafos, c) análisis de estabilidad que identifica las particiones que pueden conducir a inestabilidad en la MG, d) análisis de estado estacionario para calcular puntos de equilibrio cuando la dinámica es estable, e) nueva estrategia basada en principios de control conmutado para evitar el escenario de inestabilidad, y f) resultados experimentales. Con el fin de verificar el rendimiento operativo de los resultados analíticos, se han realizado diversos experimentos sobre una microred de laboratorio, los mismos que se discuten en términos de los objetivos de la tesis. El trabajo finaliza con las conclusionesPostprint (published version

    On the Robust Control and Optimization Strategies for Islanded Inverter-Based Microgrids

    Get PDF
    In recent years, the concept of Microgrids (MGs) has become more popular due to a significant integration of renewable energy sources (RESs) into electric power systems. Microgrids are small-scale power grids consisting of localized grouping of heterogeneous Distributed Generators (DGs), storage systems, and loads. MGs may operate either in autonomous islanded mode or connected to the main power system. Despite the significant benefits of increasing RESs, many new challenges raise in controlling MGs. Hence, a three layered hierarchical architecture consisting of three control loops closed on the DGs dynamics has been introduced for MGs. The inner loop is called Primary Control (PC), and it provides the references for the DG’s DC-AC power converters. In general, the PC is implemented in a decentralized way with the aim to establish, by means of a droop control term, the desired sharing of power among DGs while preserving the MG stability. Then, because of inverterbased DGs have no inertia, a Secondary Control (SC) layer is needed to compensate the frequency and voltage deviations introduced by the PC’s droop control terms. Finally, an operation control is designed to optimize the operation of the MGs by providing power setpoints to the lower control layers. This thesis is mainly devoted to the design of robust distributed secondary frequency and voltage restoration control strategies for AC MGs to avoid central controllers and complexity of communication networks. Different distributed strategies are proposed in this work: (i) Robust Adaptive Distributed SC with Communication delays (ii) Robust Optimal Distributed Voltage SC with Communication Delays and (iii) Distributed Finite-Time SC by Coupled Sliding-Mode Technique. In all three proposed approaches, the problem is addressed in a multi-agent fashion where the generator plays the role of cooperative agents communicating over a network and physically coupled through the power system. The first approach provides an exponentially converging voltage and frequency restoration rate in the presence of both, model uncertainties, and multiple time-varying delays in the DGs’s communications. This approach consist of two terms: 1) a decentralized Integral Sliding Mode Control (ISMC) aimed to enforce each agent (DG) to behaves as reference unperturbed dynamic; 2) an ad-hoc designed distributed protocol aimed to globally, exponentially, achieves the frequency and voltage restoration while fulfilling the power-sharing constraints in spite of the communication delays. The second approach extends the first one by including an optimization algorithm to find the optimal control gains and estimate the corresponding maximum delay tolerated by the controlled system. In the third approach, the problem of voltage and frequency restoration as well as active power sharing are solved in finite-time by exploiting delay-free communications among DGs and considering model uncertainties. In this approach, for DGs with no direct access to their reference values, a finite-time distributed sliding mode estimator is implemented for both secondary frequency and voltage schemes. The estimator determines local estimates of the global reference values of the voltage and frequency for DGs in a finite time and provides this information for the distributed SC schemes. This dissertation also proposes a novel certainty Model Predictive Control (MPC) approach for the operation of islanded MG with very high share of renewable energy sources. To this aim, the conversion losses of storage units are formulated by quadratic functions to reduce the error in storage units state of charge prediction

    On the Control of Microgrids Against Cyber-Attacks: A Review of Methods and Applications

    Get PDF
    Nowadays, the use of renewable generations, energy storage systems (ESSs) and microgrids (MGs) has been developed due to better controllability of distributed energy resources (DERs) as well as their cost-effective and emission-aware operation. The development of MGs as well as the use of hierarchical control has led to data transmission in the communication platform. As a result, the expansion of communication infrastructure has made MGs as cyber-physical systems (CPSs) vulnerable to cyber-attacks (CAs). Accordingly, prevention, detection and isolation of CAs during proper control of MGs is essential. In this paper, a comprehensive review on the control strategies of microgrids against CAs and its defense mechanisms has been done. The general structure of the paper is as follows: firstly, MGs operational conditions, i.e., the secure or insecure mode of the physical and cyber layers are investigated and the appropriate control to return to a safer mode are presented. Then, the common MGs communication system is described which is generally used for multi-agent systems (MASs). Also, classification of CAs in MGs has been reviewed. Afterwards, a comprehensive survey of available researches in the field of prevention, detection and isolation of CA and MG control against CA are summarized. Finally, future trends in this context are clarified

    Local frequency restoration for droop-controlled parallel inverters in islanded microgrids

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn islanded microgrids, voltage source inverters working in parallel are expected to provide regulation of the local frequency while granting active power sharing. This paper presents a local control approach at each inverter based on an event-driven operation of a parameter-varying filter. It ensures perfect active power sharing and controllable accuracy for frequency restoration without requiring the exchange of control data between inverters over the communication network. The paper includes stability analysis and design guidelines for the control parameters using a modeling approach that considers the interaction between inverters. Selected experimental results on a three-inverter laboratory microgrid corroborate the effectiveness of the proposed control scheme, and outlines its advantages with respect to previous similar schemes and the performance cost that implies not using communicationsPeer ReviewedPostprint (author's final draft

    Local secondary control for inverter-based islanded microgrids with accurate active-power sharing under high load conditions

    Get PDF
    Local secondary control has been successfully used to regulate the frequency of inverterbased islanded microgrids without using communications. In this scenario, noticeable steady-state deviations have been observed in active power sharing caused by the inherent clock drift of the digital processors that implement each inverter local control. This paper presents a control scheme that performs frequency regulation and improves the active power sharing under high load conditions, thus alleviating the impact of clock drifts in this situation. The study introduces a theoretical analysis that quantifies the steady-state deviations in active power sharing. It also includes a design procedure for the control parameters based on static and dynamic specifications. Experimental tests validate the expected features of the proposed control. The experimental setup is based on a laboratory microgrid equipped with three independent digital signal processors with different clock drifts.Postprint (author's final draft

    Protection and Control of Active Distribution Networks and Microgrids

    Get PDF
    This thesis is mainly focused on (i) modeling and control of Electronically Coupled Distributed Energy Resources (EC-DERs) under severe network imbalances and transient incidents, and (ii) protection of active distribution networks and microgrids against different types of faults. In the first part, an enhanced control strategy is proposed to improve the performance of EC-DERs under faults and transient disturbances, in a multi-unit microgrid setting. With the use of proposed control strategy, the host microgrid can ride through network faults, irrespective of whether they take place within the microgrid jurisdiction or impact the upstream grid, and quickly reclaim its pre-fault operating conditions to improve post-fault recovery. Further, the proposed control scheme enables the host microgrid to retain its power quality for the duration of the faults, in both modes of operation, which is a desirable property for detection of certain classes of faults, as well as for sensitive loads. In the second part of the thesis, appropriate strategies are proposed for protection of low- and medium-voltage microgrids in the islanded mode as well as the grid-connected mode of operation. The proposed protection strategies aim to detect and isolate the faults that impact the microgrid, in a selective manner. The proposed strategies can be implemented through programmable microprocessor-based relays which are commercially available; hence, the structure of new relays that enable the proposed protection strategies are also discussed in the thesis. In addition, the thesis investigates the operation of an existing distribution network as a microgrid. Thus, practical control and protection strategies that enable off-grid operation of the distribution network (considering the system constraints) are discussed. The effectiveness of the proposed control and protection strategies are demonstrated through time-domain simulation studies conducted in the PSCAD/EMTDC software environment
    corecore