695 research outputs found

    Thin Games with Symmetry and Concurrent Hyland-Ong Games

    Get PDF
    We build a cartesian closed category, called Cho, based on event structures. It allows an interpretation of higher-order stateful concurrent programs that is refined and precise: on the one hand it is conservative with respect to standard Hyland-Ong games when interpreting purely functional programs as innocent strategies, while on the other hand it is much more expressive. The interpretation of programs constructs compositionally a representation of their execution that exhibits causal dependencies and remembers the points of non-deterministic branching.The construction is in two stages. First, we build a compact closed category Tcg. It is a variant of Rideau and Winskel's category CG, with the difference that games and strategies in Tcg are equipped with symmetry to express that certain events are essentially the same. This is analogous to the underlying category of AJM games enriching simple games with an equivalence relations on plays. Building on this category, we construct the cartesian closed category Cho as having as objects the standard arenas of Hyland-Ong games, with strategies, represented by certain events structures, playing on games with symmetry obtained as expanded forms of these arenas.To illustrate and give an operational light on these constructions, we interpret (a close variant of) Idealized Parallel Algol in Cho

    On the characterization of models of H*: The semantical aspect

    Full text link
    We give a characterization, with respect to a large class of models of untyped lambda-calculus, of those models that are fully abstract for head-normalization, i.e., whose equational theory is H* (observations for head normalization). An extensional K-model DD is fully abstract if and only if it is hyperimmune, {\em i.e.}, not well founded chains of elements of D cannot be captured by any recursive function. This article, together with its companion paper, form the long version of [Bre14]. It is a standalone paper that presents a purely semantical proof of the result as opposed to its companion paper that presents an independent and purely syntactical proof of the same result

    Relation algebras from cylindric algebras, I

    Get PDF
    Accepted versio

    Strategies as Resource Terms, and Their Categorical Semantics

    Get PDF
    As shown by Tsukada and Ong, simply-typed, normal and η-long resource terms correspond to plays in Hyland-Ong games, quotiented by Melliès' homotopy equivalence. Though inspiring, their proof is indirect, relying on the injectivity of the relational model {w.r.t.} both sides of the correspondence - in particular, the dynamics of the resource calculus is taken into account only via the compatibility of the relational model with the composition of normal terms defined by normalization. In the present paper, we revisit and extend these results. Our first contribution is to restate the correspondence by considering causal structures we call augmentations, which are canonical representatives of Hyland-Ong plays up to homotopy. This allows us to give a direct and explicit account of the connection with normal resource terms. As a second contribution, we extend this account to the reduction of resource terms: building on a notion of strategies as weighted sums of augmentations, we provide a denotational model of the resource calculus, invariant under reduction. A key step - and our third contribution - is a categorical model we call a resource category, which is to the resource calculus what differential categories are to the differential λ-calculus

    Handshake Games

    Get PDF
    AbstractIn this paper I present a game model for the semantical analysis of handshake circuits. I show how the model captures effectively the composition of circuits in an associative way. Then I build a compact-closed category of handshake games and handshake strategies. I then consider the language Tangram and I define a semantics for this language simply by giving a denotation in the model to each handshake component that is used in the compilation of Tangram programs
    • …
    corecore