3,878 research outputs found

    Finite difference approximations for a fractional advection diffusion problem

    Get PDF
    The use of the conventional advection diffusion equation in many physical situations has been questioned by many investigators in recent years and alternative diffusion models have been proposed. Fractional space derivatives are used to model anomalous diffusion or dispersion, where a particle plume spreads at a rate inconsistent with the classical Brownian motion model. When a fractional derivative replaces the second derivative in a diffusion or dispersion model, it leads to enhanced diffusion, also called superdiffusion. We consider a one dimensional advection-diffusion model, where the usual second-order derivative gives place to a fractional derivative of order , with 1 < ≤ 2. We derive explicit finite difference schemes which can be seen as generalizations of already existing schemes in the literature for the advection-diffusion equation. We present the order of accuracy of the schemes and in order to show its convergence we prove they are stable under certain conditions. In the end we present a test problem

    Numerical solving unsteady space-fractional problems with the square root of an elliptic operator

    Get PDF
    An unsteady problem is considered for a space-fractional equation in a bounded domain. A first-order evolutionary equation involves the square root of an elliptic operator of second order. Finite element approximation in space is employed. To construct approximation in time, regularized two-level schemes are used. The numerical implementation is based on solving the equation with the square root of the elliptic operator using an auxiliary Cauchy problem for a pseudo-parabolic equation. The scheme of the second-order accuracy in time is based on a regularization of the three-level explicit Adams scheme. More general problems for the equation with convective terms are considered, too. The results of numerical experiments are presented for a model two-dimensional problem.Comment: 21 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1412.570

    Second order finite difference approximations for the two-dimensional time-space Caputo-Riesz fractional diffusion equation

    Full text link
    In this paper, we discuss the time-space Caputo-Riesz fractional diffusion equation with variable coefficients on a finite domain. The finite difference schemes for this equation are provided. We theoretically prove and numerically verify that the implicit finite difference scheme is unconditionally stable (the explicit scheme is conditionally stable with the stability condition τγ(Δx)α+τγ(Δy)β<C\frac{\tau^{\gamma}}{(\Delta x)^{\alpha}}+\frac{\tau^{\gamma}}{(\Delta y)^{\beta}} <C) and 2nd order convergent in space direction, and (2−γ)(2-\gamma)-th order convergent in time direction, where γ∈(0,1]\gamma \in(0,1].Comment: 27 page
    • …
    corecore