747 research outputs found

    Isotope reconstructions of East Asian Monsoon behaviour across Glacial Terminations I and II from Lake Suigetsu, Japan (IAP2−18−54)

    Get PDF
    Understanding the response of the East Asian Monsoon to rising temperatures is crucial in light of recent anthropogenic climate change and the vulnerability of East Asia to future climatic hazards. However, East Asian Monsoon dynamics during warming periods in the late Quaternary are poorly understood, particularly on decadal to millennial timescales. Significant sources of this uncertainty are the spatially and temporally heterogeneous responses of the East Asian Monsoon to submillennial temperature fluctuations. The conflicting patterns observed in available reconstructions of East Asian Monsoon strength suggest that the teleconnections acting during these intervals were complex. Understanding the behaviours of the East Asian Monsoon by accounting for links to remote climatic perturbations allows for a more holistic understanding of deglacial climate changes. A means of tackling this ambiguity is by contributing well−dated, high−resolution records of East Asian Monsoon evolution spanning Glacial Terminations I and II (which typify accessible, contrasting examples of rapid global warming) to the growing network of reconstructions from across the region. The aim of this thesis is to deconvolve East Asian Monsoon evolution during the last two glacial terminations by utilising the unique hydrological distribution of East Asian Monsoon precipitation over Japan to reconstruct both seasonal modes of the system (i.e., the East Asian Winter Monsoon and East Asian Summer Monsoon). This aim is met by the construction of isotope−based, season−specific East Asian Monsoon records across Glacial Terminations I and II using materials from the Lake Suigetsu sediment cores. This thesis is comprised of four interconnected research papers, preceded by an introduction and succeeded by a summary of findings, discussion of relevance, suggestions for future work and conclusions. In the first research paper, we utilise extended contemporary monitoring of the stable isotope composition of precipitation, river water and lake water in the Lake Suigetsu catchment to understand the factors affecting these variables and aid robust interpretation of isotope−based proxy reconstructions from the Lake Suigetsu sediment cores. Our results show that the composition of precipitation was influenced by the dual East Asian Monsoon system, and that these signals were then transferred to the lake system where they were combined with secondary local influences on lake water composition. Based on our knowledge of late Quaternary catchment dynamics, these observations suggest that the palaeo−isotope composition of Lake Suigetsu was closely related to the East Asian Monsoon. In the second research paper, we examine the influence of remote climatic processes on the East Asian Winter Monsoon and East Asian Summer Monsoon in Japan during Glacial Termination I by reconstructing trends in the strength of each seasonal mode. This is achieved using oxygen isotope analysis of diatom silica and compound−specific hydrogen isotope analysis of n−alkanoic acids from the Lake Suigetsu sediment cores. Our results support distinctive seasonal behaviours of the East Asian Monsoon during Glacial Termination I, with evidence for East Asian Winter Monsoon weakening and East Asian Summer Monsoon strengthening. The East Asian Summer Monsoon also exhibited variations in strength which were synchronous with Antarctic temperature fluctuations after 16,000 years ago, which supports a temporally restricted climatic link between Japan and the Southern Hemisphere at this time. In the third research paper, we reconstruct the East Asian Summer Monsoon in Japan during Glacial Termination II, and contrast the findings to those from Glacial Termination I. The reconstruction presented in this chapter, which is based on compound−specific hydrogen isotope analysis of n−alkanoic acids, provides evidence for early East Asian Summer Monsoon strengthening followed by a gradual weakening phase with submillennial−scale variability. Comparison of this record to others derived from mainland China supports the assertion that East Asian Summer Monsoon behaviours during Glacial Termination II were spatially heterogenous. Additionally, the different evolutions of the East Asian Summer Monsoon during Glacial Terminations I and II indicate that the system operated distinctively under contrasting boundary conditions, although the new reconstructions from Japan were consistently more closely linked with Southern Hemisphere (Antarctic) temperatures than Northern Hemisphere (Greenlandic) temperatures during both intervals. The fourth research paper was motivated by a lack of an absolute chronology for the oldest (pre−50,000 years ago) parts of the Lake Suigetsu sediment cores (which includes Glacial Termination II). In this paper, we appraise the luminescence characteristics of the cores using rapid profiling techniques. These are employed across four key time periods in order to assess the application of these methods for the detection of local and environmental shifts, and to assess the suitability of the core materials for luminescence dating. We show that the luminescence characteristics of the cores were susceptible to a range of environmental perturbations, best illustrating local changes by using high−resolution contiguous sampling. The feasibility of future luminescence dating is supported by quantifiable luminescence signals, and first order approximate ages suggest that blue light optically stimulated luminescence dating of feldspar provides the most accurate and most practical assessment of burial age. This technique should be the subject of dating efforts in pursuit of refinements to the Suigetsu core chronology before 50,000 years ago. The findings of this thesis contribute to our collective knowledge of East Asian Monsoon behaviours during glacial terminations. Critically, they represent a geographical expansion of the regional high−resolution record network to include Japan. The value of this process is demonstrated by the decoupled evolutions of each seasonal mode during Glacial Termination I, and a remote link between Antarctic temperatures and East Asian Summer Monsoon evolution in Japan during Glacial Terminations I and II, which were hitherto unconstrained by high resolution analysis. These findings acknowledge and begin to rationalise spatial and temporal heterogeneities in East Asian Monsoon behaviours by comparison to other records. This work highlights the complexity of the East Asian Monsoon, and the value of long records from contrasting deglacial periods for a better comprehension of this system in the context of anthropogenic climate change

    Combination of natural betanidin dye with synthetic organic sensitiser towards dye-sensitised solar cell application

    Get PDF
    A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science and Engineering of the Nelson Mandela African Institution of Science and TechnologyBetanidins belong to natural red-purple pigments betacyanins, which experimentally demonstrated good light adsorption in a visible range and might be suitable for the dye sensitised solar cell (DSSCs). Instability is a well-known drawback of natural dyes, which impedes their use for DSSCs. A thermodynamic approach helps to understand the betanidin (Bd) instability which occurs due to spontaneous decarboxylation reaction with decarboxylated betanidin (dBd) formation. The study considers the improvement of the sensitiser’s functionality via combination of natural Bd/dBd dyes and synthetic 4- (Diphenylamino)phenylcyanoacrylic acid (L0) dye. Novel complex D–π–A organic dyes, L0–Bd and L0–dBd with structural isomers, have been designed via esterification reactions. The DFT/B3LYP5/6‒31G(d,p) approach has been used to compute geometry, vibrational spectra and thermodynamic characteristics of the individual isomers and their complexes with L0. Implementation of TD–DFT method aids in obtaining optoelectronic properties. The broader coverage of the solar spectrum with greater light-harvesting efficiency was achieved for the complexes compared to individual dyes. The dyes attachment to the semiconductor TiO2 was simulated in terms of different adsorption modes to hydrogenated (TiO2)6 cluster. Binding energies and electronic spectra of the dye@TiO2 systems were computed, and electron density distributions over frontier molecular orbitals analysed. Binding energy magnitudes varied within 15‒21 eV for the dye@TiO2 systems

    Neutron scattering studies of heterogeneous catalysis

    Get PDF
    Understanding the structural dynamics/evolution of catalysts and the related surface chemistry is essential for establishing structure–catalysis relationships, where spectroscopic and scattering tools play a crucial role. Among many such tools, neutron scattering, though less-known, has a unique power for investigating catalytic phenomena. Since neutrons interact with the nuclei of matter, the neutron–nucleon interaction provides unique information on light elements (mainly hydrogen), neighboring elements, and isotopes, which are complementary to X-ray and photon-based techniques. Neutron vibrational spectroscopy has been the most utilized neutron scattering approach for heterogeneous catalysis research by providing chemical information on surface/bulk species (mostly H-containing) and reaction chemistry. Neutron diffraction and quasielastic neutron scattering can also supply important information on catalyst structures and dynamics of surface species. Other neutron approaches, such as small angle neutron scattering and neutron imaging, have been much less used but still give distinctive catalytic information. This review provides a comprehensive overview of recent advances in neutron scattering investigations of heterogeneous catalysis, focusing on surface adsorbates, reaction mechanisms, and catalyst structural changes revealed by neutron spectroscopy, diffraction, quasielastic neutron scattering, and other neutron techniques. Perspectives are also provided on the challenges and future opportunities in neutron scattering studies of heterogeneous catalysis

    Chemical and Photophysical Behaviour of π-Extended Tropyliums

    Get PDF
    Non-benzenoid annulenes have long fascinated organic chemists, due to their chemical properties, aromaticity, and photophysical behaviour. When incorporated into a polycyclic aromatic framework, such non-hexagonal rings can give rise to nonplanar structures with modified optical properties and improved solubility compared to planar, defect-free graphene. Among non-benzenoid annulenes, the tropylium cation has been of special interest, due to its unique blend of reactivity (owing to its positive charge) and stability (a result of its aromaticity). Indeed, this cation has found wide utility as a versatile ligand , stimulus-responsive dye , and an organocatalyst. Yet, reports of polycyclic aromatics featuring this heptagonal annulene are sparse. This Thesis employs tropylium and its neutral, nonaromatic homologue, cycloheptatriene (Figure 1) as key structural motifs within an extended π-framework to gain fundamental insights into the electronic and optical properties of non-benzenoid and charged polycyclic aromatics. We find that judicious engineering of strain into the framework of sterically overcrowded tropyliums can cause its aromaticity to rupture, forming an “aromatic-to-nonaromatic” equilibrium at room temperature. Moreover, modifying the conjugation length in a series of cycloheptatriene-rotors was found to vastly alter their photoluminescence properties, allowing for new modes of chemical reactivity. We also report our synthetic forays toward a highly warped redox-active warped nanographene, as well as preliminary findings on the excited-state proton transfer dynamics in a series of hydroxybenzotropyliums. 1. T. Murahashi, M. Fujimoto, M. A. Oka, Y. Hashimoto, T. Uemura, Y. Tatsumi, Y. Nakao, A. Ikeda, S. Sakaki and H. Kurosawa, Science, 2006, 313, 1104–1107 2. U. P. N. Tran, G. Oss, D. P. Pace, J. Ho and T. V. Nguyen, Chem. Sci., 2018, 9, 5145–5151. 3. D. J. M. Lyons, R. D. Crocker and T. V. Nguyen, Chem.—Eur. J., 2018, 24, 10959–10965. 4. P. K. Saha, A. Mallick, A. T. Turley, A. N. Bismillah, A. Danos, A. P. Monkman, A.- J. Avestro, D. S. Yufit and P. R. McGonigal, Nature Chem., 2023 15, 516–525. 5. A. T. Turley, P. K. Saha, A. Danos, Aisha N. Bismillah, A. P. Monkman, D. S. Yufit, B. F. E. Curchod, M. K. Etherington, and Paul R. McGonigal, Angew. Chem. Int. Ed., 2022, 61, e202202193

    Computational development of models and tools for the kinetic study of astrochemical gas-phase reactions

    Get PDF
    This PhD thesis focuses on the application and development of computational tools and methodologies for the modeling of the kinetics of gas-phase reactions of astrophysical interest in the interstellar medium (ISM). The complexity related to the investigation of chemical reactivity in space is mostly due to the extreme physical conditions of temperature, pressure and exposure to high-energy radiation, which in turn also lead to the formation of exotic species, like radicals and ions. Nevertheless, there is still much to be understood about the formation of molecules, the major issue being the lack of sufficient laboratory (experimental and computational) studies. A more detailed and accurate study of all the chemical processes occurring in the ISM will allow us to obtain the data necessary to simulate the chemical evolution of an interstellar cloud over time using kinetic models including thousands of reactions that involve hundreds of species. The collection of the kinetic parameters required for the relevant reactions has led to the growth of different astrochemical databases, such as KIDA and UMIST. However, the data gathered in these catalogues are incomplete, and rely extensively on crude estimations and extrapolations. These rates are of paramount importance to get a better comprehension of the relative abundances of the chemical compounds extrapolated by the astronomers from the spectral data recorded through the radio telescopes and the in-orbit devices, like the satellites. Accurate state-of-the-art computational approaches play a fundamental role in analyzing feasible reaction mechanisms and in accurately predicting the associated kinetics. Such approaches usually rely on chemical intuition where a by-hand search of the most likely pathways is performed. Unfortunately, thisprocedure can lead to overlook significant mechanisms, especially when large molecular systems are investigated. Increasing the size of a molecule can also increase the number of its possible conformers which can show a different chemical reactivity with respect to the same chemical partner. This brings to get very complex chemical reaction networks in which hundreds of chemical species are involved and thousands of chemical reactions can occur.During the last decades, a lot of effort has been done to develop computational techniques able to perform extensive and thorough investigations of complex reaction mechanisms. Such approaches rely on automated computational protocols which drastically decrease the risk of making blunders during the search for significant reaction pathways.Furthermore, the accurate characterization of the potential energy surfaces (PESs) critical points, like reactants, intermediates, transition states and products involved in the reaction mechanism, is crucial in order to carry out a reliable kinetic investigation. The kinetic analysis of an erroneous potential energy surface, would lead to gross errors in the estimation of the rate constants of the chemical species involved in the reaction.In order to avoid such errors, the combination of high-level electronic structure calculations via composite scheme can be helpful to get a more precise estimation of the energy barriers involved in the reaction mechanism. It has been proven that "cheap"[1] composite schemes can achieve subchemical accuracy without any empirical parameters and with convenient computation times, making them perfect for the purpose of this thesis.In recent decades, many efforts have been made to develop theoretical and computational methodologies to perform accurate numerical simulations of the kinetics of such complex reaction mechanisms in a wide range of thermodynamic conditions that mimic extreme reaction environmentsas for combustion systems, the atmosphere and the ISM. Such methodologies are based on the ab initio-transition-state-theory-based master equation approach, which allows the determination of rate coefficients and branching ratios of chemical species involved in complex chemical reactions. This methodology allows to make accurate predictions of the relative abundances of the reaction products for complex reactions even under conditions of temperature and pressure not experimentally accessible, such as those that characterize the ISM. Based on these premises, this dissertation has been focused on the application of a computational protocol for the ab initio-based computational modeling and kinetic investigation of gas-phase reactions which can occur in the ISM.This protocol is based on the application of validated methodologies for the automated discovery of complex reaction mechanisms by means of the AutoMeKin[2] program, the accurate calculation of the energetic of the potential energy surfaces (PESs) through the junChS and junChS-F12a "cheap" composite schemes and the kinetic investigation using the StarRate computer program specifically designed to study gas-phase reactions of astrochemical interest in conjunction with the MESS program. Furthermore, this dissertation has been also focused on the development and implementation of StarRate, a computer program for the accurate calculation of kinetics through a chemical master equation approach of multi-step chemical reactions. StarRate is an object-based program written in the so-called F language. It is structured in three main modules, namely molecules, steps and reactions, which extract the properties needed to calculate the kinetics for the single-step reactions partecipating in the overall reaction. Another module, in_out, handles program’s input and output operations. The main program,starrate, controls the sequences of the calling of the procedures contained in each of the three main modules.Through these modular structure, StarRate[3] can compute canonical and microcanonical rate coefficients taking into account for the tunneling effect and the energy-dependent and time-dependent evolution of the species concentrations involved in the reaction mechanism. Such protocol has been applied to investigate the formation reaction mechanisms of some complex interstellar polyatomic molecules, named interstellar complex organic molecules (iCOMs). More specifically, the formation of prebiotic iCOMs in space has raised considerable interest in the scientific community, because they are considered as precursors of more complex biological systems involved in the origin of life in the Universe. Debate on the origins of these biomolecular building blocks has been further stimulated by the discovery of nucleobases and amino acids in meteorites and other extraterrestrial sources. However, few insights on the chemistry which brings to the formation of such compounds is known.  References: [1] Jacopo Lupi,Silvia Alessandrini,Cristina Puzzarini,and Vincenzo Barone.junchs and junchs-F12 models:Parameter-free efficient yet accurate compositeschemes for energies and structures of noncovalent complexes. Journal of Chem-ical Theory and Computation, 17(11):6974–6992, 2021. PMID: 34677974.[2] Emilio Martínez-Núñez, George L. Barnes, David R. Glowacki, Sabine Kopec,Daniel Peláez, Aurelio Rodríguez, Roberto Rodríguez-Fernández, Robin J. Shan-non, James J. P. Stewart, Pablo G. Tahoces, and Saulo A. Vazquez.Au-tomekin2021: An open-source program for automated reaction discovery. Journalof Computational Chemistry, 42(28):2036–2048, 2021.[3] Surajit Nandi, Bernardo Ballotta, Sergio Rampino, and Vincenzo Barone.Ageneral user-friendly tool for kinetic calculations of multi-step reactions withinthe virtual multifrequency spectrometer project. Applied Sciences, 10(5), 2020

    Infrared Spectroelectrochemical Studies of Redox-Active Self Assembled Monolayers: Structure and Kinetics

    Get PDF
    Long-range bridge-mediated electron transfer proceeding through outer-sphere pathways attracts scientific interest beyond fundamental studies due to its relevance in technological systems like molecular electronics and biosensors. Deep knowledge of the structure and dynamics of these molecular interfaces and the kinetics of the electron transfer processes are critical to improving the performance of such technological systems. Interfacial charge transfer between the electrode and redox molecules can be manipulated as an outer sphere electron transfer process by employing organic molecules as bridging moieties between the electron donor and acceptor. Electrode surfaces can be made suitable for charge transfer studies via the self assembled monolayers (SAMs) of redox-substituted alkanethiols. Alternatively, redox species can be covalently tethered to the terminals of preformed monolayers of alkane chains. Electroactive surfaces prepared via both methodologies are explored for studying heterogeneous electron transfer (ET) processes using conventional electrochemical techniques such as cyclic voltammetry and chronocoulometry. Butler-Volmer (BV) formalism and Marcus-Hush-Chidsey (MHC) theory are some of the widely accepted models to predict the kinetic parameters of electron transfer processes. In-situ surface characterization techniques such as surface-enhanced infrared absorption spectroscopy (SEIRAS) offer the potential to provide deeper insights into molecular processes occurring in organized systems during electron transfer. Time-resolved SEIRAS technique is an advanced method capable of correlating structural changes in both the redox-active moiety and the scaffold supporting the redox centre preceding/during/following the electron transfer process. This thesis reports a combination of time-resolved SEIRAS with conventional electrochemistry techniques to study the electron transfer process across different electroactive layers. The time-resolved SEIRAS technique is applied here to follow the molecular restructuring of alkane-bridging moieties during the electron transfer process in ferrocene-SAM systems. The behaviour of surrounding SAM structures to the redox moieties during the electron transfer process is also explored using deuterated alkanethiols as diluents. An amide-coupling reaction is explored to link electroactive moieties to prefabricated alkanethiol SAM terminals. Studying the reaction mechanism of the amide-coupling process offers an opportunity to improve the reaction efficiency. Therefore, the potential of electrochemical-SEIRAS has been leveraged to monitor the amide-coupling process on the monolayers under various reaction conditions. SEIRAS analysis identified that the reaction intermediates change their rate of formation under the electrode potential control, which establishes proof for potential-dependent reaction pathways for amide-coupling reactions. Another redox species studied in this body of research is 2,2,6,6- tetramethylpiperidine-1-oxyl (TEMPO ̇ ), a prominent organic free radical used as a catalyst in various industrial-scale processes. Electron transfer studies of TEMPO ̇ tethered to various lengths of alkanethiols are reported in this thesis using conventional electrochemical techniques. Time-resolved SEIRAS studies of TEMPO ̇ -alkanethiol monolayers for structural and kinetic analysis are reported here for the first time. The SEIRAS analysis provides a molecular model showing the conformational change of TEMPO ̇ moieties along with structural reorientation of the alkane chain adlayers during the electron transfer process

    The long-range Falicov-Kimball model and the amorphous Kitaev model: Quantum many-body systems I have known and loved

    Get PDF
    Large systems of interacting objects can give rise to a rich array of emergent behaviours. Make those objects quantum and the possibilities only expand. Interacting quantum many-body systems, as such systems are called, include essentially all physical systems. Luckily, we don't usually need to consider this full quantum many-body description. The world at the human scale is essentially classical (not quantum), while at the microscopic scale of condensed matter physics we can often get by without interactions. Strongly correlated materials, however, do require the full description. Some of the most exciting topics in modern condensed matter fall under this umbrella: the spin liquids, the fractional quantum Hall effect, high temperature superconductivity and much more. Unfortunately, strongly correlated materials are notoriously difficult to study, defying many of the established theoretical techniques within the field. Enter exactly solvable models, these are interacting quantum many-body systems with extensively many local symmetries. The symmetries give rise to conserved charges. These charges break the model up into many non-interacting quantum systems which are more amenable to standard theoretical techniques. This thesis will focus on two such exactly solvable models. The first, the Falicov-Kimball (FK) model is an exactly solvable limit of the famous Hubbard model which describes itinerant fermions interacting with a classical Ising background field. Originally introduced to explain metal-insulator transitions, it has a rich set of ground state and thermodynamic phases. Disorder or interactions can turn metals into insulators and the FK model features both transitions. We will define a generalised FK model in 1D with long-range interactions. This model shows a similarly rich phase diagram to its higher dimensional cousins. We use an exact Markov Chain Monte Carlo method to map the phase diagram and compute the energy resolved localisation properties of the fermions. This allows us to look at how the move to 1D affects the physics of the model. We show that the model can be understood by comparison to a simpler model of fermions coupled to binary disorder. The second, the Kitaev Honeycomb (KH) model, was the one of the first solvable 2D models with a Quantum Spin Liquid (QSL) ground state. QSLs are generally expected to arise from Mott insulators, when frustration prevents magnetic ordering all the way to zero temperature. The QSL state defies the traditional Landau-Ginzburg-Wilson paradigm of phases being defined by local order parameters. It is instead a topologically ordered phase. Recent work generalising non-interacting topological insulator phases to amorphous lattices raises the question of whether interacting phases like the QSLs can be similarly generalised. We extend the KH model to random lattices with fixed coordination number three generated by Voronoi partitions of the plane. We show that this model remains solvable and hosts a chiral amorphous QSL ground state. The presence of plaquettes with an odd number of sides leads to a spontaneous breaking of time reversal symmetry. We unearth a rich phase diagram displaying Abelian as well as a non-Abelian QSL phases with a remarkably simple ground state flux pattern. Furthermore, we show that the system undergoes a phase transition to a conducting thermal metal state and discuss possible experimental realisations.Open Acces

    Strain Mapping of Single Nanowires using Nano X-ray Diffraction

    Get PDF
    Nanowires are explored as basic components for a large range of electronic devices. The nanowire format offersseveral benefits, including reduced material consumption and increased potential for combining materials to formnew novel heterostructures. Several factors, such as mechanical stress from contacting or a lattice mismatch in aheterostructure, can strain and change the lattice tilt. The strain is often intertwined with small gradients ofcomposition. The strain relaxation can differ significantly from bulk due to the small diameters, but the mechanismsare not fully comprehended. X-rays have a penetrating power that makes it possible to investigate embeddedsamples without preparation or slicing. The high flux of coherent X-ray beams from synchrotron radiation facilities,combined with the nano-focus capabilities developed in recent years, have made it possible to probe nano-crystals.The 4th generation of synchrotrons, including MAX IV in Lund, Sweden, has even higher brilliance than previoussources. Diffraction imaging techniques using synchrotron radiation can reveal small strains down to 10-4-10-5. Thefield of coherent imaging pushes the limits of resolutions below the size of the focus. With Bragg ptychography, thedisplacement field in a crystal can be probed with resolution beyond the probe focus by numerically reconstructingthe phase.This thesis includes the development of X-ray nano-diffraction methods for the characterizing of nanowires, includingGaInP/InP barcode nanowires, p-i-n InP nanowire devices and metal halide perovskite CsPbBr3 nanowires. Itincludes a theoretical background of the scattering mechanisms in Thomson scattering in nano-crystals, goesthrough the formalism for coherent diffraction imaging, crystal structure and deformation in nanoobjects and thetechnical aspects of the experimental setup and measurement. Moreover, theoretical modelling of elastic strainrelaxation in these nanowires was performed with finite element modelling.Single III-V nanowire heterostructures and III-V nanowire devices were probed with scanning XRD and Braggprojection ptychography (BPP). How the techniques compare to each other and how the results are affected by thedifferent approximations that are made in the respective technique was explored. Finite element simulationscombined with nano-diffraction revealed that the lattice mismatch of 1.5% could be relaxed elastically for thediameter of 180 nm. From the strain mapping of the nanowire device, we found how the contacting of the nanowirebends the nanowire resulting in a tilt normal to the substrate.Single perovskite metal-halide perovskite CsPb(Br(1-x)Clx)3 nanowire heterostructures were characterized withscanning nano-XRD and XRF, which showed that the lattice spacing was affected by composition and strain.Composition gradients revealed that Cl diffusion had taken place within the heterostructure. Furthermore, extractingthe lattice tilts from shifts of the Bragg peak revealed a ferroelastic domain structure with simultaneously existinglattice tilts. These findings are beneficial for the further development of MHP nanowires devices

    Modeling and investigation of thermal conductivity of GF nanocomposites by molecular dynamics simulation and micro-mechanics

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Synthesis of novel symmetrical and unsymmetrical aza BODIPY analogues.

    Get PDF
    This thesis is focused on the expansion of the synthetic study of aza (dibenzo) BODIPY analogues. It describes a more detailed investigation of the formation of the precursor aminoisoindolines using reaction of alkyl and benzyl acetylenes with bromo benzamidine under microwave conditions. Treating the amidine with 1-hexyne under Sonogashira copper-free cross coupling reaction conditions led to unexpected formation of the six-member ring compound, 3-butyl isoquinoline-1-amine was isolated in 31% yield. However, using aryl acetylene in the synthesis of the precursor aminoisoindolines successfully produced the required 5-member ring compounds (aminoisoindolines) in good yield. Therefore, a variety of new symmetrical and unsymmetrical aza BODIPYs and their precursors aza (dibenzo) dipyrromethenes bearing electron withdrawing or electron donating substituents have been smoothly synthesised and isolated in good yield. Initially the synthesis of unsymmetrical analogues was achieved using simple mixed condensation reactions. Approximately statistical mixtures were produced when the precursor aminoisoindolenes were electronically similar. However, when they were different, the reaction favoured the formation of the two symmetrical derivatives. Consequently, a new synthetic procedure has been developed to control the synthesis of unsymmetrical analogues by converting of the amino group of one aminoisoindoline into good leaving groups such as triflate or tosylate. This successfully led to favour formation of the unsymmetrical aza (dibenzo) dipyrromethenes with reaction yields of up to double those obtained via the mixed condensation synthetic method (50% - 64%). Complexation of symmetrical and unsymmetrical aza (dibenzo) dipyrromethenes with BF3.OEt2 was successfully optimized by treating the mixture with TMS-Cl to remove the fluoride ion which led to shift the equilibrium towards the target aza BODIPYs with remarkable improvement in the outcome. The final part of the thesis describes attempts to cyclise aza dipyrromethenes to form porphyrin-like macrocycles. Unfortunately, these attempts were unsuccessful due to a combination of low reactivity and isomerisation of the precursors in the presence of any metal
    • …
    corecore