1 research outputs found

    Exploring laser-driven quantum phenomena from a time-frequency analysis perspective: A comprehensive study

    Full text link
    Time-frequency (TF) analysis is a powerful tool for exploring ultrafast dynamics in atoms and molecules. While some TF methods have demonstrated their usefulness and potential in several of quantum systems, a systematic comparison among these methods is still lacking. To this end, we compare a series of classical and contemporary TF methods by taking hydrogen atom in a strong laser field as a benchmark. In addition, several TF methods such as Cohen class distribution other than the Wigner-Ville distribution, reassignment methods, and the empirical mode decomposition method are first introduced to exploration of ultrafast dynamics. Among these TF methods, the synchrosqueezing transform successfully illustrates the physical mechanisms in the multiphoton ionization regime and in the tunneling ionization regime. Furthermore, an empirical procedure to analyze an unknown complicated quantum system is provided, indicating the versatility of TF analysis as a new viable venue for exploring quantum dynamics
    corecore