1,994 research outputs found

    Proportional fairness and its relationship with multi-class queueing networks

    Full text link
    We consider multi-class single-server queueing networks that have a product form stationary distribution. A new limit result proves a sequence of such networks converges weakly to a stochastic flow level model. The stochastic flow level model found is insensitive. A large deviation principle for the stationary distribution of these multi-class queueing networks is also found. Its rate function has a dual form that coincides with proportional fairness. We then give the first rigorous proof that the stationary throughput of a multi-class single-server queueing network converges to a proportionally fair allocation. This work combines classical queueing networks with more recent work on stochastic flow level models and proportional fairness. One could view these seemingly different models as the same system described at different levels of granularity: a microscopic, queueing level description; a macroscopic, flow level description and a teleological, optimization description.Comment: Published in at http://dx.doi.org/10.1214/09-AAP612 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Closed queueing networks under congestion: non-bottleneck independence and bottleneck convergence

    Get PDF
    We analyze the behavior of closed product-form queueing networks when the number of customers grows to infinity and remains proportionate on each route (or class). First, we focus on the stationary behavior and prove the conjecture that the stationary distribution at non-bottleneck queues converges weakly to the stationary distribution of an ergodic, open product-form queueing network. This open network is obtained by replacing bottleneck queues with per-route Poissonian sources whose rates are determined by the solution of a strictly concave optimization problem. Then, we focus on the transient behavior of the network and use fluid limits to prove that the amount of fluid, or customers, on each route eventually concentrates on the bottleneck queues only, and that the long-term proportions of fluid in each route and in each queue solve the dual of the concave optimization problem that determines the throughputs of the previous open network.Comment: 22 page

    Store-Forward and its implications for Proportional Scheduling

    Full text link
    The Proportional Scheduler was recently proposed as a scheduling algorithm for multi-hop switch networks. For these networks, the BackPressure scheduler is the classical benchmark. For networks with fixed routing, the Proportional Scheduler is maximum stable, myopic and, furthermore, will alleviate certain scaling issued found in BackPressure for large networks. Nonetheless, the equilibrium and delay properties of the Proportional Scheduler has not been fully characterized. In this article, we postulate on the equilibrium behaviour of the Proportional Scheduler though the analysis of an analogous rule called the Store-Forward allocation. It has been shown that Store-Forward has asymptotically allocates according to the Proportional Scheduler. Further, for Store-Forward networks, numerous equilibrium quantities are explicitly calculable. For FIFO networks under Store-Forward, we calculate the policies stationary distribution and end-to-end route delay. We discuss network topologies when the stationary distribution is product-form, a phenomenon which we call \emph{product form resource pooling}. We extend this product form notion to independent set scheduling on perfect graphs, where we show that non-neighbouring queues are statistically independent. Finally, we analyse the large deviations behaviour of the equilibrium distribution of Store-Forward networks in order to construct Lyapunov functions for FIFO switch networks

    Monotonicity and error bounds for networks of Erlang loss queues

    Get PDF
    Networks of Erlang loss queues naturally arise when modelling finite communication systems without delays, among which, most notably are (i) classical circuit switch telephone networks (loss networks) and (ii) present-day wireless mobile networks. Performance measures of interest such as loss probabilities or throughputs can be obtained from the steady state distribution. However, while this steady state distribution has a closed product form expression in the first case (loss networks), it does not have one in the second case due to blocked (and lost) handovers. Product form approximations are therefore suggested. These approximations are obtained by a combined modification of both the state space (by a hypercubic expansion) and the transition rates (by extra redial rates). It will be shown that these product form approximations lead to (1) upper bounds for loss probabilities and \ud (2) analytic error bounds for the accuracy of the approximation for various performance measures.\ud The proofs of these results rely upon both monotonicity results and an analytic error bound method as based on Markov reward theory. This combination and its technicalities are of interest by themselves. The technical conditions are worked out and verified for two specific applications:\ud (1)• pure loss networks as under (2)• GSM networks with fixed channel allocation as under.\ud The results are of practical interest for computational simplifications and, particularly, to guarantee that blocking probabilities do not exceed a given threshold such as for network dimensioning

    Towards a System Theoretic Approach to Wireless Network Capacity in Finite Time and Space

    Get PDF
    In asymptotic regimes, both in time and space (network size), the derivation of network capacity results is grossly simplified by brushing aside queueing behavior in non-Jackson networks. This simplifying double-limit model, however, lends itself to conservative numerical results in finite regimes. To properly account for queueing behavior beyond a simple calculus based on average rates, we advocate a system theoretic methodology for the capacity problem in finite time and space regimes. This methodology also accounts for spatial correlations arising in networks with CSMA/CA scheduling and it delivers rigorous closed-form capacity results in terms of probability distributions. Unlike numerous existing asymptotic results, subject to anecdotal practical concerns, our transient one can be used in practical settings: for example, to compute the time scales at which multi-hop routing is more advantageous than single-hop routing

    Monotonicity and error bounds for networks of Erlang loss queues

    Get PDF
    Networks of Erlang loss queues naturally arise when modelling finite communication systems without delays, among which, most notably\ud (i) classical circuit switch telephone networks (loss networks) and\ud (ii) present-day wireless mobile networks.\ud \ud Performance measures of interest such as loss probabilities or throughputs can be obtained from the steady state distribution. However, while this steady state distribution has a closed product form expression in the first case (loss networks), it has not in the second case due to blocked (and lost) handovers. Product form approximations are therefore suggested. These approximations are obtained by a combined modification of both the state space (by a hyper cubic expansion) and the transition rates (by extra redial rates). It will be shown that these product form approximations lead to\ud \ud - secure upper bounds for loss probabilities and\ud - analytic error bounds for the accuracy of the approximation for various performance measures.\ud \ud The proofs of these results rely upon both monotonicity results and an analytic error bound method as based on Markov reward theory. This combination and its technicalities are of interest by themselves. The technical conditions are worked out and verified for two specific applications:\ud \ud - pure loss networks as under (i)\ud - GSM-networks with fixed channel allocation as under (ii).\ud \ud The results are of practical interest for computational simplifications and, particularly, to guarantee blocking probabilities not to exceed a given threshold such as for network dimensioning.\u
    corecore