490 research outputs found

    Decoy State Quantum Key Distribution

    Full text link
    There has been much interest in quantum key distribution. Experimentally, quantum key distribution over 150 km of commercial Telecom fibers has been successfully performed. The crucial issue in quantum key distribution is its security. Unfortunately, all recent experiments are, in principle, insecure due to real-life imperfections. Here, we propose a method that can for the first time make most of those experiments secure by using essentially the same hardware. Our method is to use decoy states to detect eavesdropping attacks. As a consequence, we have the best of both worlds--enjoying unconditional security guaranteed by the fundamental laws of physics and yet dramatically surpassing even some of the best experimental performances reported in the literature.Comment: Slightly shortened version. Accepted for publication in PR

    Quantum Metropolitan Optical Network based on Wavelength Division Multiplexing

    Get PDF
    Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.Comment: 23 pages, 8 figure
    corecore