1,972 research outputs found

    Optimizing the computation of overriding

    Full text link
    We introduce optimization techniques for reasoning in DLN---a recently introduced family of nonmonotonic description logics whose characterizing features appear well-suited to model the applicative examples naturally arising in biomedical domains and semantic web access control policies. Such optimizations are validated experimentally on large KBs with more than 30K axioms. Speedups exceed 1 order of magnitude. For the first time, response times compatible with real-time reasoning are obtained with nonmonotonic KBs of this size

    The Design of the Fifth Answer Set Programming Competition

    Full text link
    Answer Set Programming (ASP) is a well-established paradigm of declarative programming that has been developed in the field of logic programming and nonmonotonic reasoning. Advances in ASP solving technology are customarily assessed in competition events, as it happens for other closely-related problem-solving technologies like SAT/SMT, QBF, Planning and Scheduling. ASP Competitions are (usually) biennial events; however, the Fifth ASP Competition departs from tradition, in order to join the FLoC Olympic Games at the Vienna Summer of Logic 2014, which is expected to be the largest event in the history of logic. This edition of the ASP Competition series is jointly organized by the University of Calabria (Italy), the Aalto University (Finland), and the University of Genova (Italy), and is affiliated with the 30th International Conference on Logic Programming (ICLP 2014). It features a completely re-designed setup, with novelties involving the design of tracks, the scoring schema, and the adherence to a fixed modeling language in order to push the adoption of the ASP-Core-2 standard. Benchmark domains are taken from past editions, and best system packages submitted in 2013 are compared with new versions and solvers. To appear in Theory and Practice of Logic Programming (TPLP).Comment: 10 page

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Δ3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table
    • …
    corecore