4 research outputs found

    Reverse Thinking in Spatial Queries

    Full text link
    In recent years, an increasing number of researches are conducted on spatial queries regarding the influence of query objects. Among these queries, reverse k nearest neighbors (RkNN) query is the one studied the most extensively. Reverse k furthest neighbors (RkFN) queries is the natural complement of RkNN queries. RkNN query is introduced to reflect the influence of the query object. Since this representation is intuitive, RkNN query has attracted significant attention among the database community. Later, reverse top-k queries was introduced, and also used extensively to represent influence. In many scenarios, when we consider the influence of an spatial object, reverse thinking is involved. That is, whether an object is influential to another object is depending on how the other object assess this object, other than how this object considers the other object. In this thesis, we study three problems involves reverse thinking. We first study the problem of efficiently computing RkFN queries. We are the first to propose a solution for arbitrary value of k. Based on several interesting observations, we present an efficient algorithm to process the RkFN queries. We also present a rigorous theoretical analysis to study various important aspects of the problem and our algorithm. An extensive experimental study demonstrates that our algorithm outperforms the state-of-the-art algorithm even for k=1. The accuracy of our theoretical analysis is also verified. We then study the problem of selecting set of representative products considering both diversity and coverage based on reverse top-k queries. Since this problem is NP-hard, we employ a greedy algorithm. We adopt MinHash and KMV Synopses to assist set operations. Our experimental study demonstrates the performance of the proposed algorithm. We also study the problem of maximizing spatial influence of facility bundle based on RkNN queries. We are the first to study this problem. We prove its NP-hardness, and propose a branch-and-bound best first search algorithm that greedily select the currently best facility until we get the required number of facilities. We introduce the concept of kNN region. It allows us to avoid redundant calculation with dynamic programming technique. Experiments show that our algorithm is orders of magnitudes better than our baseline algorithm

    Event detection in high throughput social media

    Get PDF

    Event detection in high throughput social media

    Get PDF

    Efficient query processing on spatial and textual data: beyond individual queries

    Get PDF
    With the increasing popularity of GPS enabled mobile devices, queries with locational intent are quickly becoming the most common type of search task on the web. This development has driven several research work on efficient processing of spatial and spatial-textual queries in the past few decades. While most of the existing work focus on answering queries independently, e.g., one query at a time, many real-life applications require the processing of multiple queries in a short period of time, and can benefit from sharing computations. This thesis focuses on efficient processing of the queries on spatial and spatial-textual data for the applications where multiple queries are of interest. Specifically, the following queries are studied: (i) batch processing of top-k spatial-textual queries; (ii) optimal location and keyword selection queries; and (iii) top-m rank aggregation on streaming spatial queries. The batch processing of queries is motivated from different application scenarios that require computing the result of multiple queries efficiently, including (i) multiple-query optimization, where the overall efficiency and throughput can be improved by grouping or partitioning a large set of queries; and (ii) continuous processing of a query stream, where in each time slot, the queries that have arrived can be processed together. In this thesis, given a set of top-k spatial-textual queries, the problem of computing the results for all the queries concurrently and efficiently as a batch is addressed. Some applications require an aggregation over the results of multiple queries. An exam- ple application is to identify the optimal value of attributes (e.g., location, text) for a new facility/service, so that the facility will appear in the query result of the maximum number of potential customers. This problem is essentially an aggregation (maximization) over the results of queries issued by multiple potential customers, where each user can be treated as a top-k query. In this thesis, we address this problem for spatial and textual data where the computations for multiple users are shared to find the final result. Rank aggregation is the problem of combining multiple rank orderings to produce a single ordering of the objects. Thus, aggregating the ranks of spatial objects can provide key insights into the importance of the objects in many different scenarios. This translates into a natural extension of the problem that finds the top-m objects with the highest aggregate rank over multiple queries. As the users issue new queries, clearly the rank aggregations continuously change over time, and recency also play an important role when interpreting the final results. The top-m rank aggregation of spatial objects for streaming queries is studied in this thesis, where the problem is to report the updated top-m objects with the highest aggregate rank over a subset of the most recent queries from a stream
    corecore