92,612 research outputs found

    Null cone evolution of axisymmetric vacuum spacetimes

    Full text link
    We present the details of an algorithm for the global evolution of asymptotically flat, axisymmetric spacetimes, based upon a characteristic initial value formulation using null cones as evolution hypersurfaces. We identify a new static solution of the vacuum field equations which provides an important test bed for characteristic evolution codes. We also show how linearized solutions of the Bondi equations can be generated by solutions of the scalar wave equation, thus providing a complete set of test beds in the weak field regime. These tools are used to establish that the algorithm is second order accurate and stable, subject to a Courant-Friedrichs-Lewy condition. In addition, the numerical versions of the Bondi mass and news function, calculated at scri on a compactified grid, are shown to satisfy the Bondi mass loss equation to second order accuracy. This verifies that numerical evolution preserves the Bianchi identities. Results of numerical evolution confirm the theorem of Christodoulou and Klainerman that in vacuum, weak initial data evolve to a flat spacetime. For the class of asymptotically flat, axisymmetric vacuum spacetimes, for which no nonsingular analytic solutions are known, the algorithm provides highly accurate solutions throughout the regime in which neither caustics nor horizons form.Comment: 25 pages, 6 figure

    Simultaneous reconstruction of outer boundary shape and admittivity distribution in electrical impedance tomography

    Full text link
    The aim of electrical impedance tomography is to reconstruct the admittivity distribution inside a physical body from boundary measurements of current and voltage. Due to the severe ill-posedness of the underlying inverse problem, the functionality of impedance tomography relies heavily on accurate modelling of the measurement geometry. In particular, almost all reconstruction algorithms require the precise shape of the imaged body as an input. In this work, the need for prior geometric information is relaxed by introducing a Newton-type output least squares algorithm that reconstructs the admittivity distribution and the object shape simultaneously. The method is built in the framework of the complete electrode model and it is based on the Fr\'echet derivative of the corresponding current-to-voltage map with respect to the object boundary shape. The functionality of the technique is demonstrated via numerical experiments with simulated measurement data.Comment: 3 figure

    Exponential stabilization of driftless nonlinear control systems using homogeneous feedback

    Get PDF
    This paper focuses on the problem of exponential stabilization of controllable, driftless systems using time-varying, homogeneous feedback. The analysis is performed with respect to a homogeneous norm in a nonstandard dilation that is compatible with the algebraic structure of the control Lie algebra. It can be shown that any continuous, time-varying controller that achieves exponential stability relative to the Euclidean norm is necessarily non-Lipschitz. Despite these restrictions, we provide a set of constructive, sufficient conditions for extending smooth, asymptotic stabilizers to homogeneous, exponential stabilizers. The modified feedbacks are everywhere continuous, smooth away from the origin, and can be extended to a large class of systems with torque inputs. The feedback laws are applied to an experimental mobile robot and show significant improvement in convergence rate over smooth stabilizers
    • …
    corecore