50 research outputs found

    Routing in Sensor Networks: Performance and Security in clustered networks

    Get PDF
    © ASEE 2008Due to high restrictions in sensor network, where the resources are limited, clustering protocols for routing organization have been proposed in much research for increasing system throughput, decreasing system delay and saving energy. Even these algorithms have proposed some levels of security, but because of their dynamic nature of communication, most of their security solutions are not suitable. In this paper we focus on how to apply the highest possible level of security to sensor networks and at the same time increase the performance of these networks by changing the way that sensors communicate with each other

    A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring

    Full text link
    [EN] Sensor networks can be used in many sorts of environments. The increase of pollution and carbon footprint are nowadays an important environmental problem. The use of sensors and sensor networks can help to make an early detection in order to mitigate their effect over the medium. The deployment of wireless sensor networks (WSNs) requires high-energy efficiency and secures mechanisms to ensure the data veracity. Moreover, when WSNs are deployed in harsh environments, it is very difficult to recharge or replace the sensor's batteries. For this reason, the increase of network lifetime is highly desired. WSNs also work in unattended environments, which is vulnerable to different sort of attacks. Therefore, both energy efficiency and security must be considered in the development of routing protocols for WSNs. In this paper, we present a novel Secure and Low-energy Zone-based Routing Protocol (SeLeZoR) where the nodes of the WSN are split into zones and each zone is separated into clusters. Each cluster is controlled by a cluster head. Firstly, the information is securely sent to the zone-head using a secret key; then, the zone-head sends the data to the base station using the secure and energy efficient mechanism. This paper demonstrates that SeLeZoR achieves better energy efficiency and security levels than existing routing protocols for WSNs.Mehmood, A.; Lloret, J.; Sendra, S. (2016). A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring. Wireless Communications and Mobile Computing. 16(17):2869-2883. https://doi.org/10.1002/wcm.2734S286928831617Sendra S Deployment of efficient wireless sensor nodes for monitoring in rural, indoor and underwater environments 2013Javaid, N., Qureshi, T. N., Khan, A. H., Iqbal, A., Akhtar, E., & Ishfaq, M. (2013). EDDEEC: Enhanced Developed Distributed Energy-efficient Clustering for Heterogeneous Wireless Sensor Networks. Procedia Computer Science, 19, 914-919. doi:10.1016/j.procs.2013.06.125Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Garcia, M., Lloret, J., Sendra, S., & Rodrigues, J. J. P. C. (2011). Taking Cooperative Decisions in Group-Based Wireless Sensor Networks. Cooperative Design, Visualization, and Engineering, 61-65. doi:10.1007/978-3-642-23734-8_9Garcia, M., & Lloret, J. (2009). A Cooperative Group-Based Sensor Network for Environmental Monitoring. Cooperative Design, Visualization, and Engineering, 276-279. doi:10.1007/978-3-642-04265-2_41Jain T Wireless environmental monitoring system (wems) using data aggregation in a bidirectional hybrid protocol In Proc of the 6th International Conference ICISTM 2012 2012Senouci, M. R., Mellouk, A., Senouci, H., & Aissani, A. (2012). Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols. Journal of Network and Computer Applications, 35(4), 1317-1328. doi:10.1016/j.jnca.2012.01.016Heinzelman WR Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks In proc of the 33rd Annual Hawaii International Conference on System Sciences 2000 2000Xiangning F Yulin S Improvement on LEACH protocol of wireless sensor network In proc of the 2007 International Conference on Sensor Technologies and Applications SensorComm 2007 2007Tong M Tang M LEACH-B: an improved LEACH protocol for wireless sensor network In proc of the 6th International Conference on Wireless Communications Networking and Mobile Computing WiCOM 2010 2010Mohammad El-Basioni, B. M., Abd El-kader, S. M., Eissa, H. S., & Zahra, M. M. (2011). An Optimized Energy-aware Routing Protocol for Wireless Sensor Network. Egyptian Informatics Journal, 12(2), 61-72. doi:10.1016/j.eij.2011.03.001Younis O Fahmy S Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach In proc of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM 2004 2004Noack, A., & Spitz, S. (2009). Dynamic Threshold Cryptosystem without Group Manager. Network Protocols and Algorithms, 1(1). doi:10.5296/npa.v1i1.161Nasser, N., & Chen, Y. (2007). SEEM: Secure and energy-efficient multipath routing protocol for wireless sensor networks. Computer Communications, 30(11-12), 2401-2412. doi:10.1016/j.comcom.2007.04.014Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors Journal, 11(1), 45-55. doi:10.1109/jsen.2010.2051539Parra L Sendra S Jimenez JM Lloret J Smart system to detect and track pollution in marine environments, in proc. of the 2015 2015 1503 1508Atto, M., & Guy, C. (2014). Routing Protocols and Quality of Services for Security Based Applications Using Wireless Video Sensor Networks. Network Protocols and Algorithms, 6(3), 119. doi:10.5296/npa.v6i3.5802Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780-790. doi:10.1016/j.future.2011.04.019Bri D Sendra S Coll H Lloret J How the atmospheric variables affect to the WLAN datalink layer parameters 2010Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422-429. doi:10.1109/jcn.2013.000073Amjad M 2014 Energy efficient multi level and distance clustering mechanism for wireless sensor networksMeghanathan, N. (2015). A Generic Algorithm to Determine Maximum Bottleneck Node Weight-based Data Gathering Trees for Wireless Sensor Networks. Network Protocols and Algorithms, 7(3), 18. doi:10.5296/npa.v7i3.796

    Multi-stage secure clusterhead selection using discrete rule-set against unknown attacks in wireless sensor network

    Get PDF
    Security is the rising concern of the wireless network as there are various forms of reonfigurable network that is arised from it. Wireless sensor network (WSN) is one such example that is found to be an integral part of cyber-physical system in upcoming times. After reviewing the existing system, it can be seen that there are less dominant and robust solutions towards mitigating the threats of upcoming applications of WSN. Therefore, this paper introduces a simple and cost-effective modelling of a security system that offers security by ensuring secure selection of clusterhead during the data aggregation process in WSN. The proposed system also makes construct a rule-set in order to learn the nature of the communication iin order to have a discrete knowledge about the intensity of adversaries. With an aid of simulation-based approach over MEMSIC nodes, the proposed system was proven to offer reduced energy consumption with good data delivery performance in contrast to existing approach

    PAWN: a payload-based mutual authentication scheme for wireless sensor networks

    Full text link
    Copyright © 2016 John Wiley & Sons, Ltd. Wireless sensor networks (WSNs) consist of resource-starving miniature sensor nodes deployed in a remote and hostile environment. These networks operate on small batteries for days, months, and even years depending on the requirements of monitored applications. The battery-powered operation and inaccessible human terrains make it practically infeasible to recharge the nodes unless some energy-scavenging techniques are used. These networks experience threats at various layers and, as such, are vulnerable to a wide range of attacks. The resource-constrained nature of sensor nodes, inaccessible human terrains, and error-prone communication links make it obligatory to design lightweight but robust and secured schemes for these networks. In view of these limitations, we aim to design an extremely lightweight payload-based mutual authentication scheme for a cluster-based hierarchical WSN. The proposed scheme, also known as payload-based mutual authentication for WSNs, operates in 2 steps. First, an optimal percentage of cluster heads is elected, authenticated, and allowed to communicate with neighboring nodes. Second, each cluster head, in a role of server, authenticates the nearby nodes for cluster formation. We validate our proposed scheme using various simulation metrics that outperform the existing schemes

    Performance and security measure of clustering protocols for sensor networks

    Get PDF
    Micro sensor nodes are now easily available and are very cheap. These resource constrained nodes are spread in remote locations to gather data. There are some energy efficient clustering protocols that are known to work well for sensor networks. The performance of these algorithms are mainly measured by the their energy consumption. In this thesis, we develop a performance measure for these algorithms that includes the energy spent, the time delay incurred in the whole process and the information loss. We have formulated a novel metric, the entropy based information loss metric, which to the best of our knowledge has not been previously addressed. We then optimize the joint performance measure which is a combination of these different metrics to yield the optimal clustering configuration.;Security is a key concern in many sensor network scenarios. In this thesis we analyze the performance differences in existing clustering protocols when security is added. In particular, we analyze how the optimal configuration of the LEACH protocol changes when we apply a pre deployment key distribution based security protocol to it.;The final contribution of this thesis is a new secure clustering protocol for sensor networks. In particular, this is a grid based secure solution to a commonly used clustering protocol, the LEACH protocol. We show that our protocol, the GS-LEACH protocol is more energy efficient than any of the existing secure flavors of LEACH. In addition, our protocol is more scalable to regions of different shapes and sizes and provides uniform coverage due to the grid structure of the clusters, thereby guaranteeing a better quality of the information collected

    Securing Cluster Head Selection in Wireless Sensor Networks

    Get PDF
    Wireless Sensor network routing protocols are prone to various attacks as these protocols mainly provide the function of routing data towards the sink. LEACH is a one of the routing protocol used for clustered implementation of wireless sensor network with Received Signal Strength based dynamic selection of Cluster Heads. But, as with other routing protocols, LEACH is also prone to HELLO flood attack when the malicious sensor node becomes the Cluster Head. Cryptographic and non-cryptographic approaches to detect the presence of HELLO flood attack also exist but they lack efficiency in some way. In this paper, an efficient protocol is proposed for the detection and prevention of HELLO Flood attack in wireless sensor network. Cluster heads are vulnerable to various malicious attacks and this greatly affects the performance of the wireless sensor network. Cryptographic approaches to prevent this attack are not so helpful though some non-cryptographic methods to detect the HELLO Flood attack also exist but they are not too efficient as they result in large test packet overhead. In this paper, we propose HRSRP (Hello flood attack Resistant Secure Routing Protocol) extension to LEACH protocol so as to protect the cluster head against Hello flood attack. HRSRP is base on encryption using Armstrong number and decryption using AES algorithm to verify the identity of cluster head. The proposed technique is implemented in NS2, the experimental results clearly indicate the proposed technique has significant capability for the detection of hello flood attack launched for making the malicious node as the cluster head

    Analysis of Low Energy Adaptive Clustering Hierarchy (LEACH) protocol

    Get PDF
    Sensor network consists of tiny sensors and actuators with general purpose computing elements to cooperatively monitor physical or environmental conditions, such as temperature, pressure, etc. Wireless Sensor Networks are uniquely characterized by properties like limited power they can harvest or store, dynamic network topology, large scale of deployment. Sensor networks have a huge application in fields which includes habitat monitoring, object tracking, fire detection, land slide detection and traffic monitoring. Based on the network topology, routing protocols in sensor networks can be classified as flat-based routing, hierarchical-based routing and location-based routing. These protocols are quite simple and hence are very susceptible to attacks like Sinkhole attack, Selective forwarding, Sybil attack, Wormholes, HELLO flood attack, Acknowledgement spoofing or altering, replaying routing information. Low Energy Adaptive Clustering Hierarchy (LEACH) is an energy-efficient hierarchical-based routing protocol. Our prime focus was on the analysis of LEACH based upon certain parameters like network lifetime, stability period, etc. and also the effect of selective forwarding attack and degree of heterogeneity on LEACH protocol. After a number of simulations, it was found that the stability region’s length is considerably increased by choosing an optimal value of heterogeneity; energy is not properly utilized and throughput is decreased in networks compromised by selective forwarding attack but the number of cluster-heads per round remains unaffected in such networks

    Secure Cluster Head Sensor Elections Using Signal Strength Estimation and Ordered Transmissions

    Get PDF
    In clustered sensor networks, electing CHs (Cluster Heads) in a secure manner is very important because they collect data from sensors and send the aggregated data to the sink. If a compromised node is elected as a CH, it can illegally acquire data from all the members and even send forged data to the sink. Nevertheless, most of the existing CH election schemes have not treated the problem of the secure CH election. Recently, random value based protocols have been proposed to resolve the secure CH election problem. However, these schemes cannot prevent an attacker from suppressing its contribution for the change of CH election result and from selectively forwarding its contribution for the disagreement of CH election result. In this paper, we propose a modified random value scheme to prevent these disturbances. Our scheme dynamically adjusts the forwarding order of contributions and discards a received contribution when its signal strength is lower than the specified level to prevent these malicious actions. The simulation results have shown that our scheme effectively prevents attackers from changing and splitting an agreement of CH election result. Also, they have shown that our scheme is relatively energy-efficient than other schemes
    corecore