3,139 research outputs found

    Solving the dynamic traveling salesman problem using a genetic algorithm with trajectory prediction: an application to fish aggregating devices

    Get PDF
    The paper addresses the synergies from combining a heuristic method with a predictive technique to solve the Dynamic Traveling Salesman Problem (DTSP). Particularly, we build a genetic algorithm that feeds on Newton's motion equation to show how route optimization can be improved when targets are constantly moving. Our empirical evidence stems from the recovery of fish aggregating devices (FADs) by tuna vessels. Based on historical real data provided by GPS buoys attached to the FADs, we first estimate their trajectories to feed a genetic algorithm that searches for the best route considering their future locations. Our solution, which we name Genetic Algorithm based on Trajectory Prediction (GATP), shows that the distance traveled is significantly shorter than implementing other commonly used methods.European Regional Development Fund | Ref. 10SEC300036PRMinisterio de EconomĂ­a y Competitividad | Ref. ECO2013-45706

    Probabilistic seasonal forecasts of North Atlantic atmospheric circulation using complex systems modelling and comparison with dynamical models

    Get PDF
    Dynamical seasonal forecast models are improving with time but tend to underestimate the amplitude of atmospheric circulation variability and to have lower skill in predicting summer variability than in winter. Here we construct Nonlinear AutoRegressive Moving Average models with eXogenous inputs (NARMAX) to develop the analysis of drivers of North Atlantic atmospheric circulation and jet stream variability, focusing on the East Atlantic (EA) and Scandinavian (SCA) patterns as well as the North Atlantic Oscillation (NAO) index. New time series of these indices are developed from Empirical Orthogonal Function (EOF) analysis. Geopotential height data from the ERA5 reanalysis are used to generate the EOFs. Sets of predictors with known associations with these drivers are developed and used to formulate a sliding window NARMAX model. This model demonstrates a high degree of predictive accuracy, as indicated by its average correlation coefficients over the testing period (2006-2021): 0.78 for NAO, 0.83 for EA, and 0.68 for SCA. In comparison, the SEAS5 and GloSea5 dynamical forecast models exhibit lower correlations with observed circulation changes: for NAO the correlation coefficients are 0.51 for SEAS5 and 0.34 for GloSea5, for EA they are 0.15 and 0.09 respectively, and for SCA they are 0.28 and 0.24 respectively. Comparison of NARMAX predictions with forecasts and hindcasts from the SEAS5 and GloSea5 models highlights areas where NARMAX can be used to help improve seasonal forecast skill and inform the development of dynamical models, especially in the case of summer

    Air Quality Research Using Remote Sensing

    Get PDF
    Air pollution is a worldwide environmental hazard that poses serious consequences not only for human health and the climate but also for agriculture, ecosystems, and cultural heritage, among other factors. According to the WHO, there are 8 million premature deaths every year as a result of exposure to ambient air pollution. In addition, more than 90% of the world’s population live in areas where the air quality is poor, exceeding the recommended limits. On the other hand, air pollution and the climate co-influence one another through complex physicochemical interactions in the atmosphere that alter the Earth’s energy balance and have implications for climate change and the air quality. It is important to measure specific atmospheric parameters and pollutant compound concentrations, monitor their variations, and analyze different scenarios with the aim of assessing the air pollution levels and developing early warning and forecast systems as a means of improving the air quality and safeguarding public health. Such measures can also form part of efforts to achieve a reduction in the number of air pollution casualties and mitigate climate change phenomena. This book contains contributions focusing on remote sensing techniques for evaluating air quality, including the use of in situ data, modeling approaches, and the synthesis of different instrumentations and techniques. The papers published in this book highlight the importance and relevance of air quality studies and the potential of remote sensing, particularly that conducted from Earth observation platforms, to shed light on this topic

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    Artificial intelligence in wind speed forecasting: a review

    Get PDF
    Wind energy production has had accelerated growth in recent years, reaching an annual increase of 17% in 2021. Wind speed plays a crucial role in the stability required for power grid operation. However, wind intermittency makes accurate forecasting a complicated process. Implementing new technologies has allowed the development of hybrid models and techniques, improving wind speed forecasting accuracy. Additionally, statistical and artificial intelligence methods, especially artificial neural networks, have been applied to enhance the results. However, there is a concern about identifying the main factors influencing the forecasting process and providing a basis for estimation with artificial neural network models. This paper reviews and classifies the forecasting models used in recent years according to the input model type, the pre-processing and post-processing technique, the artificial neural network model, the prediction horizon, the steps ahead number, and the evaluation metric. The research results indicate that artificial neural network (ANN)-based models can provide accurate wind forecasting and essential information about the specific location of potential wind use for a power plant by understanding the future wind speed values

    Sustainable Reservoir Management Approaches under Impacts of Climate Change - A Case Study of Mangla Reservoir, Pakistan

    Get PDF
    Reservoir sedimentation is a major issue for water resource management around the world. It has serious economic, environmental, and social consequences, such as reduced water storage capacity, increased flooding risk, decreased hydropower generation, and deteriorated water quality. Increased rainfall intensity, higher temperatures, and more extreme weather events due to climate change are expected to exacerbate the problem of reservoir sedimentation. As a result, sedimentation must be managed to ensure the long-term viability of reservoirs and their associated infrastructure. Effective reservoir sedimentation management in the face of climate change necessitates an understanding of the sedimentation process and the factors that influence it, such as land use practices, erosion, and climate. Monitoring and modelling sedimentation rates are also useful tools for forecasting future impacts and making management decisions. The goal of this research is to create long-term reservoir management strategies in the face of climate change by simulating the effects of various reservoir-operating strategies on reservoir sedimentation and sediment delta movement at Mangla Reservoir in Pakistan (the second-largest dam in the country). In order to assess the impact of the Mangla Reservoir's sedimentation and reservoir life, a framework was developed. This framework incorporates both hydrological and morphodynamic models and various soft computing models. In addition to taking climate change uncertainty into consideration, the proposed framework also incorporates sediment source, sediment delivery, and reservoir morphology changes. Furthermore, the purpose of this study is to provide a practical methodology based on the limited data available. In the first phase of this study, it was investigated how to accurately quantify the missing suspended sediment load (SSL) data in rivers by utilizing various techniques, such as sediment rating curves (SRC) and soft computing models (SCMs), including local linear regression (LLR), artificial neural networks (ANN) and wavelet-cum-ANN (WANN). Further, the Gamma and M-test were performed to select the best-input variables and appropriate data length for SCMs development. Based on an evaluation of the outcomes of all leading models for SSL estimation, it can be concluded that SCMs are more effective than SRC approaches. Additionally, the results also indicated that the WANN model was the most accurate model for reconstructing the SSL time series because it is capable of identifying the salient characteristics in a data series. The second phase of this study examined the feasibility of using four satellite precipitation datasets (SPDs) which included GPM, PERSIANN_CDR, CHIRPS, and CMORPH to predict streamflow and sediment loads (SL) within a poorly gauged mountainous catchment, by employing the SWAT hydrological model as well as SWAT coupled soft computing models (SCMs) such as artificial neural networks (SWAT-ANN), random forests (SWAT-RF), and support vector regression (SWAT-SVR). SCMs were developed using the outputs of un-calibrated SWAT hydrological models to improve the predictions. The results indicate that during the entire simulation, the GPM shows the best performance in both schemes, while PERSIAN_CDR and CHIRPS also perform well, whereas CMORPH predicts streamflow for the Upper Jhelum River Basin (UJRB) with relatively poor performance. Among the best GPM-based models, SWAT-RF offered the best performance to simulate the entire streamflow, while SWAT-ANN excelled at simulating the SL. Hence, hydrological coupled SCMs based on SPDs could be an effective technique for simulating streamflow and SL, particularly in complex terrain where gauge network density is low or uneven. The third and last phase of this study investigated the impact of different reservoir operating strategies on Mangla reservoir sedimentation using a 1D sediment transport model. To improve the accuracy of the model, more accurate boundary conditions for flow and sediment load were incorporated into the numerical model (derived from the first and second phases of this study) so that the successive morphodynamic model could precisely predict bed level changes under given climate conditions. Further, in order to assess the long-term effect of a changing climate, a Global Climate Model (GCM) under Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 for the 21st century is used. The long-term modelling results showed that a gradual increase in the reservoir minimum operating level (MOL) slows down the delta movement rate and the bed level close to the dam. However, it may compromise the downstream irrigation demand during periods of high water demand. The findings may help the reservoir managers to improve the reservoir operation rules and ultimately support the objective of sustainable reservoir use for societal benefit. In summary, this study provides comprehensive insights into reservoir sedimentation phenomena and recommends an operational strategy that is both feasible and sustainable over the long term under the impact of climate change, especially in cases where a lack of data exists. Basically, it is very important to improve the accuracy of sediment load estimates, which are essential in the design and operation of reservoir structures and operating plans in response to incoming sediment loads, ensuring accurate reservoir lifespan predictions. Furthermore, the production of highly accurate streamflow forecasts, particularly when on-site data is limited, is important and can be achieved by the use of satellite-based precipitation data in conjunction with hydrological and soft computing models. Ultimately, the use of soft computing methods produces significantly improved input data for sediment load and discharge, enabling the application of one-dimensional hydro-morphodynamic numerical models to evaluate sediment dynamics and reservoir useful life under the influence of climate change at various operating conditions in a way that is adequate for evaluating sediment dynamics.:Chapter 1: Introduction Chapter 2:Reconstruction of Sediment Load Data in Rivers Chapter 3:Assessment of The Hydrological and Coupled Soft Computing Models, Based on Different Satellite Precipitation Datasets, To Simulate Streamflow and Sediment Load in A Mountainous Catchment Chapter 4:Simulating the Impact of Climate Change with Different Reservoir Operating Strategies on Sedimentation of the Mangla Reservoir, Northern Pakistan Chapter 5:Conclusions and Recommendation

    Complex systems methods characterizing nonlinear processes in the near-Earth electromagnetic environment: recent advances and open challenges

    Get PDF
    Learning from successful applications of methods originating in statistical mechanics, complex systems science, or information theory in one scientific field (e.g., atmospheric physics or climatology) can provide important insights or conceptual ideas for other areas (e.g., space sciences) or even stimulate new research questions and approaches. For instance, quantification and attribution of dynamical complexity in output time series of nonlinear dynamical systems is a key challenge across scientific disciplines. Especially in the field of space physics, an early and accurate detection of characteristic dissimilarity between normal and abnormal states (e.g., pre-storm activity vs. magnetic storms) has the potential to vastly improve space weather diagnosis and, consequently, the mitigation of space weather hazards. This review provides a systematic overview on existing nonlinear dynamical systems-based methodologies along with key results of their previous applications in a space physics context, which particularly illustrates how complementary modern complex systems approaches have recently shaped our understanding of nonlinear magnetospheric variability. The rising number of corresponding studies demonstrates that the multiplicity of nonlinear time series analysis methods developed during the last decades offers great potentials for uncovering relevant yet complex processes interlinking different geospace subsystems, variables and spatiotemporal scales

    Assessing prioritization measures for a private land conservation program in the U.S. Prairie Pothole Region

    Get PDF
    Private land conservation has become an important tool for protecting biodiversity and habitat, but methods for prioritizing and scheduling conservation on private land are still being developed. While return on investment methods have been suggested as a potential path forward, the different processes linking private landscapes to the socioeconomic systems in which they are embedded create unique challenges for scheduling conservation with this approach. We investigated a range of scheduling approaches within a return on investment framework for breeding waterfowl and broods in the Prairie Pothole Region of North Dakota, South Dakota, and Montana. Current conservation targeting for waterfowl in the region focuses mostly on the distribution and abundance of breeding waterfowl. We tested whether MaxGain approaches for waterfowl conservation differed from MinLoss approaches in terms of return on investment and which approach performed best in avoiding loss of waterfowl and broods separately. We also examined variation in results based upon the temporal scale of the abundance layers used for input and compared the region's current scheduling approach with results from our simulations. Our results suggested that MinLoss was the most efficient scheduling approach for both breeding waterfowl and broods and that using just breeding waterfowl to target areas for conservation programs might cause organizations to overlook important areas for broods, particularly over shorter timespans. The higher efficiency of MinLoss approaches in our simulations also indicated that incorporating probability of wetland drainage into decision-making improved the overall return on investment. We recommend that future conservation scheduling for easements in the region and for private land conservation in general include some form of return on investment or cost-effective analysis to make conservation more transparent

    Transparent Forecasting Strategies in Database Management Systems

    Get PDF
    Whereas traditional data warehouse systems assume that data is complete or has been carefully preprocessed, increasingly more data is imprecise, incomplete, and inconsistent. This is especially true in the context of big data, where massive amount of data arrives continuously in real-time from vast data sources. Nevertheless, modern data analysis involves sophisticated statistical algorithm that go well beyond traditional BI and, additionally, is increasingly performed by non-expert users. Both trends require transparent data mining techniques that efficiently handle missing data and present a complete view of the database to the user. Time series forecasting estimates future, not yet available, data of a time series and represents one way of dealing with missing data. Moreover, it enables queries that retrieve a view of the database at any point in time - past, present, and future. This article presents an overview of forecasting techniques in database management systems. After discussing possible application areas for time series forecasting, we give a short mathematical background of the main forecasting concepts. We then outline various general strategies of integrating time series forecasting inside a database and discuss some individual techniques from the database community. We conclude this article by introducing a novel forecasting-enabled database management architecture that natively and transparently integrates forecast models

    Forecasted Treatment Effects

    Full text link
    We consider estimation and inference of the effects of a policy in the absence of a control group. We obtain unbiased estimators of individual (heterogeneous) treatment effects and a consistent and asymptotically normal estimator of the average treatment effects, based on forecasting counterfactuals using a short time series of pre-treatment data. We show that the focus should be on forecast unbiasedness rather than accuracy. Correct specification of the forecasting model is not necessary to obtain unbiased estimates of individual treatment effects. Instead, simple basis function (e.g., polynomial time trends) regressions deliver unbiasedness under a broad class of data-generating processes for the individual counterfactuals. Basing the forecasts on a model can introduce misspecification bias and does not necessarily improve performance even under correct specification. Consistency and asymptotic normality of our Forecasted Average Treatment effects (FAT) estimator are attained under an additional assumption that rules out common and unforecastable shocks occurring between the treatment date and the date at which the effect is calculated
    • …
    corecore