33,423 research outputs found

    Simple stopping criteria for information theoretic feature selection

    Full text link
    Feature selection aims to select the smallest feature subset that yields the minimum generalization error. In the rich literature in feature selection, information theory-based approaches seek a subset of features such that the mutual information between the selected features and the class labels is maximized. Despite the simplicity of this objective, there still remain several open problems in optimization. These include, for example, the automatic determination of the optimal subset size (i.e., the number of features) or a stopping criterion if the greedy searching strategy is adopted. In this paper, we suggest two stopping criteria by just monitoring the conditional mutual information (CMI) among groups of variables. Using the recently developed multivariate matrix-based Renyi's \alpha-entropy functional, which can be directly estimated from data samples, we showed that the CMI among groups of variables can be easily computed without any decomposition or approximation, hence making our criteria easy to implement and seamlessly integrated into any existing information theoretic feature selection methods with a greedy search strategy.Comment: Paper published in the journal of Entrop

    Resampling methods for parameter-free and robust feature selection with mutual information

    Get PDF
    Combining the mutual information criterion with a forward feature selection strategy offers a good trade-off between optimality of the selected feature subset and computation time. However, it requires to set the parameter(s) of the mutual information estimator and to determine when to halt the forward procedure. These two choices are difficult to make because, as the dimensionality of the subset increases, the estimation of the mutual information becomes less and less reliable. This paper proposes to use resampling methods, a K-fold cross-validation and the permutation test, to address both issues. The resampling methods bring information about the variance of the estimator, information which can then be used to automatically set the parameter and to calculate a threshold to stop the forward procedure. The procedure is illustrated on a synthetic dataset as well as on real-world examples
    • …
    corecore