342 research outputs found

    Contrastive audio-language learning for music

    Get PDF
    As one of the most intuitive interfaces known to humans, natural language has the potential to mediate many tasks that involve human-computer interaction, especially in application-focused fields like Music Information Retrieval. In this work, we explore cross-modal learning in an attempt to bridge audio and language in the music domain. To this end, we propose MusCALL, a framework for Music Contrastive Audio-Language Learning. Our approach consists of a dual-encoder architecture that learns the alignment between pairs of music audio and descriptive sentences, producing multimodal embeddings that can be used for text-to-audio and audio-to-text retrieval out-of-the-box. Thanks to this property, MusCALL can be transferred to virtually any task that can be cast as text-based retrieval. Our experiments show that our method performs significantly better than the baselines at retrieving audio that matches a textual description and, conversely, text that matches an audio query. We also demonstrate that the multimodal alignment capability of our model can be successfully extended to the zero-shot transfer scenario for genre classification and auto-tagging on two public datasets

    Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval

    Get PDF
    Deep cross-modal learning has successfully demonstrated excellent performance in cross-modal multimedia retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics should be taken into account. Stemming from the characteristic of temporal structures of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). Data in different modalities are converted to the same canonical space where inter modal canonical correlation analysis is utilized as an objective function to calculate the similarity of temporal structures. This is the first study that uses deep architectures for learning the temporal correlation between audio and lyrics. A pre-trained Doc2Vec model followed by fully-connected layers is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i) We propose an end-to-end network to learn cross-modal correlation between audio and lyrics, where feature extraction and correlation learning are simultaneously performed and joint representation is learned by considering temporal structures. ii) As for feature extraction, we further represent an audio signal by a short sequence of local summaries (VGG16 features) and apply a recurrent neural network to compute a compact feature that better learns temporal structures of music audio. Experimental results, using audio to retrieve lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning architectures in cross-modal music retrieval

    Learnable PINs: Cross-Modal Embeddings for Person Identity

    Full text link
    We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.Comment: To appear in ECCV 201

    A Survey of AI Music Generation Tools and Models

    Full text link
    In this work, we provide a comprehensive survey of AI music generation tools, including both research projects and commercialized applications. To conduct our analysis, we classified music generation approaches into three categories: parameter-based, text-based, and visual-based classes. Our survey highlights the diverse possibilities and functional features of these tools, which cater to a wide range of users, from regular listeners to professional musicians. We observed that each tool has its own set of advantages and limitations. As a result, we have compiled a comprehensive list of these factors that should be considered during the tool selection process. Moreover, our survey offers critical insights into the underlying mechanisms and challenges of AI music generation

    Learning feature hierarchies for musical audio signals

    Get PDF

    An End-to-End Neural Network for Polyphonic Music Transcription

    Get PDF
    We present a neural network model for polyphonic music transcription. The architecture of the proposed model is analogous to speech recognition systems and comprises an acoustic model and a music language mode}. The acoustic model is a neural network used for estimating the probabilities of pitches in a frame of audio. The language model is a recurrent neural network that models the correlations between pitch combinations over time. The proposed model is general and can be used to transcribe polyphonic music without imposing any constraints on the polyphony or the number or type of instruments. The acoustic and language model predictions are combined using a probabilistic graphical model. Inference over the output variables is performed using the beam search algorithm. We investigate various neural network architectures for the acoustic models and compare their performance to two popular state-of-the-art acoustic models. We also present an efficient variant of beam search that improves performance and reduces run-times by an order of magnitude, making the model suitable for real-time applications. We evaluate the model's performance on the MAPS dataset and show that the proposed model outperforms state-of-the-art transcription systems

    Online Audio-Visual Multi-Source Tracking and Separation: A Labeled Random Finite Set Approach

    Get PDF
    The dissertation proposes an online solution for separating an unknown and time-varying number of moving sources using audio and visual data. The random finite set framework is used for the modeling and fusion of audio and visual data. This enables an online tracking algorithm to estimate the source positions and identities for each time point. With this information, a set of beamformers can be designed to separate each desired source and suppress the interfering sources
    corecore