58,613 research outputs found

    A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    Full text link
    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a "Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named "Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.Comment: in 18th International Conference on Extending Database Technology (EDBT) (2015

    Fast Search for Dynamic Multi-Relational Graphs

    Full text link
    Acting on time-critical events by processing ever growing social media or news streams is a major technical challenge. Many of these data sources can be modeled as multi-relational graphs. Continuous queries or techniques to search for rare events that typically arise in monitoring applications have been studied extensively for relational databases. This work is dedicated to answer the question that emerges naturally: how can we efficiently execute a continuous query on a dynamic graph? This paper presents an exact subgraph search algorithm that exploits the temporal characteristics of representative queries for online news or social media monitoring. The algorithm is based on a novel data structure called the Subgraph Join Tree (SJ-Tree) that leverages the structural and semantic characteristics of the underlying multi-relational graph. The paper concludes with extensive experimentation on several real-world datasets that demonstrates the validity of this approach.Comment: SIGMOD Workshop on Dynamic Networks Management and Mining (DyNetMM), 201

    On the Complexity of Searching in Trees: Average-case Minimization

    Full text link
    We focus on the average-case analysis: A function w : V -> Z+ is given which defines the likelihood for a node to be the one marked, and we want the strategy that minimizes the expected number of queries. Prior to this paper, very little was known about this natural question and the complexity of the problem had remained so far an open question. We close this question and prove that the above tree search problem is NP-complete even for the class of trees with diameter at most 4. This results in a complete characterization of the complexity of the problem with respect to the diameter size. In fact, for diameter not larger than 3 the problem can be shown to be polynomially solvable using a dynamic programming approach. In addition we prove that the problem is NP-complete even for the class of trees of maximum degree at most 16. To the best of our knowledge, the only known result in this direction is that the tree search problem is solvable in O(|V| log|V|) time for trees with degree at most 2 (paths). We match the above complexity results with a tight algorithmic analysis. We first show that a natural greedy algorithm attains a 2-approximation. Furthermore, for the bounded degree instances, we show that any optimal strategy (i.e., one that minimizes the expected number of queries) performs at most O(\Delta(T) (log |V| + log w(T))) queries in the worst case, where w(T) is the sum of the likelihoods of the nodes of T and \Delta(T) is the maximum degree of T. We combine this result with a non-trivial exponential time algorithm to provide an FPTAS for trees with bounded degree

    Improved Bounds for 3SUM, kk-SUM, and Linear Degeneracy

    Get PDF
    Given a set of nn real numbers, the 3SUM problem is to decide whether there are three of them that sum to zero. Until a recent breakthrough by Gr{\o}nlund and Pettie [FOCS'14], a simple Θ(n2)\Theta(n^2)-time deterministic algorithm for this problem was conjectured to be optimal. Over the years many algorithmic problems have been shown to be reducible from the 3SUM problem or its variants, including the more generalized forms of the problem, such as kk-SUM and kk-variate linear degeneracy testing (kk-LDT). The conjectured hardness of these problems have become extremely popular for basing conditional lower bounds for numerous algorithmic problems in P. In this paper, we show that the randomized 44-linear decision tree complexity of 3SUM is O(n3/2)O(n^{3/2}), and that the randomized (2k2)(2k-2)-linear decision tree complexity of kk-SUM and kk-LDT is O(nk/2)O(n^{k/2}), for any odd k3k\ge 3. These bounds improve (albeit randomized) the corresponding O(n3/2logn)O(n^{3/2}\sqrt{\log n}) and O(nk/2logn)O(n^{k/2}\sqrt{\log n}) decision tree bounds obtained by Gr{\o}nlund and Pettie. Our technique includes a specialized randomized variant of fractional cascading data structure. Additionally, we give another deterministic algorithm for 3SUM that runs in O(n2loglogn/logn)O(n^2 \log\log n / \log n ) time. The latter bound matches a recent independent bound by Freund [Algorithmica 2017], but our algorithm is somewhat simpler, due to a better use of word-RAM model

    Towards a Scalable Dynamic Spatial Database System

    Get PDF
    With the rise of GPS-enabled smartphones and other similar mobile devices, massive amounts of location data are available. However, no scalable solutions for soft real-time spatial queries on large sets of moving objects have yet emerged. In this paper we explore and measure the limits of actual algorithms and implementations regarding different application scenarios. And finally we propose a novel distributed architecture to solve the scalability issues.Comment: (2012

    Symbolic Partial-Order Execution for Testing Multi-Threaded Programs

    Full text link
    We describe a technique for systematic testing of multi-threaded programs. We combine Quasi-Optimal Partial-Order Reduction, a state-of-the-art technique that tackles path explosion due to interleaving non-determinism, with symbolic execution to handle data non-determinism. Our technique iteratively and exhaustively finds all executions of the program. It represents program executions using partial orders and finds the next execution using an underlying unfolding semantics. We avoid the exploration of redundant program traces using cutoff events. We implemented our technique as an extension of KLEE and evaluated it on a set of large multi-threaded C programs. Our experiments found several previously undiscovered bugs and undefined behaviors in memcached and GNU sort, showing that the new method is capable of finding bugs in industrial-size benchmarks.Comment: Extended version of a paper presented at CAV'2
    corecore