10,712 research outputs found

    Emergence of qualia from brain activity or from an interaction of proto-consciousness with the brain: which one is the weirder? Available evidence and a research agenda

    Get PDF
    This contribution to the science of consciousness aims at comparing how two different theories can explain the emergence of different qualia experiences, meta-awareness, meta-cognition, the placebo effect, out-of-body experiences, cognitive therapy and meditation-induced brain changes, etc. The first theory postulates that qualia experiences derive from specific neural patterns, the second one, that qualia experiences derive from the interaction of a proto-consciousness with the brain\u2019s neural activity. From this comparison it will be possible to judge which one seems to better explain the different qualia experiences and to offer a more promising research agenda

    Perceiving deviance

    Get PDF
    I defend the claim that we have the capacity to perceptually represent objects and events in experience as deviating from an expectation, or, for short, as deviant. The rival hypothesis is that we may ascribe the property of deviance to a stimulus at a cognitive level, but that property is not a representational content of perceptual experience. I provide empirical reasons to think that, contrary to the rival hypothesis, we do perceptually represent deviance

    The Boy Who Grew a New Brain: Understanding this Miracle from a Neuro-Quantum Perspective

    Get PDF
    In this paper, we present a case of a boy – Noah Wall, who till today surprises the world of neuroscience with his will to grow his brain and survive. The case presented in this study sets a stepping stone in understanding the advent of the will to make a choice, from a neuro-quantum mechanics interpretation. We propose that besides our internal states of choices (neurogenesis, neuroplasticity, cell differentiation, etc.) we also relate with external states of choices (love, compassion, empathy, emotions, etc.) that contributes to its emergence. Quantum uncertainty seems to support the existence of a fundamental property based on which the universe functions; which means that even the nothing of free space has a small chance of containing something. Outcomes are not determined by prior or random events but by consciousness that gives rise to these outcomes. This provides us a lead into understanding the existence of the will and the origin of choice when we look deeper into the realms of the implausible interpretations of quantum mechanics. Free will is the ability for the mind to choose between possible outcomes. Willful power is therefore not only a psychological intervention but also a biological and quantum intervention, where we have the capacity to make choices about what direction we will take, making a change to the systematic functioning of our body

    Meditation Experiences, Self, and Boundaries of Consciousness

    Get PDF
    Our experiences with the external world are possible mainly through vision, hearing, taste, touch, and smell providing us a sense of reality. How the brain is able to seamlessly integrate stimuli from our external and internal world into our sense of reality has yet to be adequately explained in the literature. We have previously proposed a three-dimensional unified model of consciousness that partly explains the dynamic mechanism. Here we further expand our model and include illustrations to provide a better conception of the ill-defined space within the self, providing insight into a unified mind-body concept. In this article, we propose that our senses “super-impose” on an existing dynamic space within us after a slight, imperceptible delay. The existing space includes the entire intrapersonal space and can also be called the “the body’s internal 3D default space”. We provide examples from meditation experiences to help explain how the sense of ‘self’ can be experienced through meditation practice associated with underlying physiological processes that take place through cardio-respiratory synchronization and coherence that is developed among areas of the brain. Meditation practice can help keep the body in a parasympathetic dominant state during meditation, allowing an experience of inner ‘self’. Understanding this physical and functional space could help unlock the mysteries of the function of memory and cognition, allowing clinicians to better recognize and treat disorders of the mind by recommending proven techniques to reduce stress as an adjunct to medication treatment

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Analogy, Mind, and Life

    Get PDF
    I'll show that the kind of analogy between life and information [argue for by authors such as Davies (2000), Walker and Davies (2013), Dyson (1979), Gleick (2011), Kurzweil (2012), Ward (2009)] – that seems to be central to the effect that artificial mind may represents an expected advance in the life evolution in Universe – is like the design argument and that if the design argument is unfounded and invalid, the argument to the effect that artificial mind may represents an expected advance in the life evolution in Universe is also unfounded and invalid. However, if we are prepared to admit (though we should not do) this method of reasoning as valid, I'll show that the analogy between life and information to the effect that artificial mind may represents an expected advance in the life evolution in Universe seems suggest some type of reductionism of life to information, but biology respectively chemistry or physics are not reductionist, contrary to what seems to be suggested by the analogy between life and information

    An interoceptive predictive coding model of conscious presence

    Get PDF
    We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness
    corecore