644 research outputs found

    On the Algorithmic Nature of the World

    Full text link
    We propose a test based on the theory of algorithmic complexity and an experimental evaluation of Levin's universal distribution to identify evidence in support of or in contravention of the claim that the world is algorithmic in nature. To this end we have undertaken a statistical comparison of the frequency distributions of data from physical sources on the one hand--repositories of information such as images, data stored in a hard drive, computer programs and DNA sequences--and the frequency distributions generated by purely algorithmic means on the other--by running abstract computing devices such as Turing machines, cellular automata and Post Tag systems. Statistical correlations were found and their significance measured.Comment: Book chapter in Gordana Dodig-Crnkovic and Mark Burgin (eds.) Information and Computation by World Scientific, 2010. (http://www.idt.mdh.se/ECAP-2005/INFOCOMPBOOK/). Paper website: http://www.mathrix.org/experimentalAIT

    HpGAN: Sequence Search with Generative Adversarial Networks

    Get PDF
    Sequences play an important role in many engineering applications and systems. Searching sequences with desired properties has long been an interesting but also challenging research topic. This article proposes a novel method, called HpGAN, to search desired sequences algorithmically using generative adversarial networks (GAN). HpGAN is based on the idea of zero-sum game to train a generative model, which can generate sequences with characteristics similar to the training sequences. In HpGAN, we design the Hopfield network as an encoder to avoid the limitations of GAN in generating discrete data. Compared with traditional sequence construction by algebraic tools, HpGAN is particularly suitable for intractable problems with complex objectives which prevent mathematical analysis. We demonstrate the search capabilities of HpGAN in two applications: 1) HpGAN successfully found many different mutually orthogonal complementary code sets (MOCCS) and optimal odd-length Z-complementary pairs (OB-ZCPs) which are not part of the training set. In the literature, both MOCSSs and OB-ZCPs have found wide applications in wireless communications. 2) HpGAN found new sequences which achieve four-times increase of signal-to-interference ratio--benchmarked against the well-known Legendre sequence--of a mismatched filter (MMF) estimator in pulse compression radar systems. These sequences outperform those found by AlphaSeq.Comment: 12 pages, 16 figure

    NEURAL COMPUTATION APPROACH FOR THE MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION OF COMMUNICATIONS SIGNAL

    Get PDF
    Abstract: A novel detection approach for signals in digital communications is proposed in this paper by using the neural network with transiently chaos and time-variant gain (NNTCTG) developed by author. The maximum likelihood signal detection problem can be always described as a complex optimization problem with so many local optima that conventional Hopfield-type neural networks cannot be applied. To amend the drawbacks of Hopfield-type networks, the NNTCTG is used to search for globally optimal or near-optimal solutions of the optimization problems with lots of local optima since it has richer and more flexible dynamics over conventional networks only with point attractors. We established a neuro-based detection model for the signal in digital communication and analyzed its working procedure in detail. Two simulation experiments were conducted to illustrate the validity and effectiveness of the proposed approach

    Optimisation of multiplier-less FIR filter design techniques

    Get PDF
    This thesis is concerned with the design of multiplier-less (ML) finite impulse response (FIR) digital filters. The use of multiplier-less digital filters results in simplified filtering structures, better throughput rates and higher speed. These characteristics are very desirable in many DSP systems. This thesis concentrates on the design of digital filters with power-of-two coefficients that result in simplified filtering structures. Two distinct classesof ML FIR filter design algorithms are developed and compared with traditional techniques. The first class is based on the sensitivity of filter coefficients to rounding to power-of-two. Novel elements include extending of the algorithm for multiple-bands filters and introducing mean square error as the sensitivity criterion. This improves the performance of the algorithm and reduces the complexity of resulting filtering structures. The second class of filter design algorithms is based on evolutionary techniques, primarily genetic algorithms. Three different algorithms based on genetic algorithm kernel are developed. They include simple genetic algorithm, knowledge-based genetic algorithm and hybrid of genetic algorithm and simulated annealing. Inclusion of the additional knowledge has been found very useful when re-designing filters or refining previous designs. Hybrid techniques are useful when exploring large, N-dimensional searching spaces. Here, the genetic algorithm is used to explore searching space rapidly, followed by fine search using simulated annealing. This approach has been found beneficial for design of high-order filters. Finally, a formula for estimation of the filter length from its specification and complementing both classes of design algorithms, has been evolved using techniques of symbolic regression and genetic programming. Although the evolved formula is very complex and not easily understandable, statistical analysis has shown that it produces more accurate results than traditional Kaiser's formula. In summary, several novel algorithms for the design of multiplier-less digital filters have been developed. They outperform traditional techniques that are used for the design of ML FIR filters and hence contributed to the knowledge in the field of ML FIR filter design
    • …
    corecore