10,738 research outputs found

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    Recomendation systems and crowdsourcing: a good wedding for enabling innovation? Results from technology affordances and costraints theory

    Get PDF
    Recommendation Systems have come a long way since their first appearance in the e-commerce platforms.Since then, evolved Recommendation Systems have been successfully integrated in social networks. Now its time to test their usability and replicate their success in exciting new areas of web -enabled phenomena. One of these is crowdsourcing. Research in the IS field is investigating the need, benefits and challenges of linking the two phenomena. At the moment, empirical works have only highlighted the need to implement these techniques for tasks assignment in crowdsourcing distributed work platforms and the derived benefits for contributors and firms. We review the variety of the tasks that can be crowdsourced through these platforms and theoretically evaluate the efficiency of using RS to recommend a task in creative crowdsourcing platforms. Adopting a Technology Affordances and Constraints Theory, an emerging perspective in the Information Systems (IS) literature to understand technology use and consequences, we anticipate the tensions that this implementation can generate

    Interactive context-aware user-driven metadata correction in digital libraries

    Get PDF
    Personal name variants are a common problem in digital libraries, reducing the precision of searches and complicating browsing-based interaction. The book-centric approach of name authority control has not scaled to match the growth and diversity of digital repositories. In this paper, we present a novel system for user-driven integration of name variants when interacting with web-based information-in particular digital library-systems. We approach these issues via a client-side JavaScript browser extension that can reorganize web content and also integrate remote data sources. Designed to be agnostic towards the web sites it is applied to, we illustrate the developed proof-of-concept system through worked examples using three different digital libraries. We discuss the extensibility of the approach in the context of other user-driven information systems and the growth of the Semantic Web

    Accelerating Innovation Through Analogy Mining

    Full text link
    The availability of large idea repositories (e.g., the U.S. patent database) could significantly accelerate innovation and discovery by providing people with inspiration from solutions to analogous problems. However, finding useful analogies in these large, messy, real-world repositories remains a persistent challenge for either human or automated methods. Previous approaches include costly hand-created databases that have high relational structure (e.g., predicate calculus representations) but are very sparse. Simpler machine-learning/information-retrieval similarity metrics can scale to large, natural-language datasets, but struggle to account for structural similarity, which is central to analogy. In this paper we explore the viability and value of learning simpler structural representations, specifically, "problem schemas", which specify the purpose of a product and the mechanisms by which it achieves that purpose. Our approach combines crowdsourcing and recurrent neural networks to extract purpose and mechanism vector representations from product descriptions. We demonstrate that these learned vectors allow us to find analogies with higher precision and recall than traditional information-retrieval methods. In an ideation experiment, analogies retrieved by our models significantly increased people's likelihood of generating creative ideas compared to analogies retrieved by traditional methods. Our results suggest a promising approach to enabling computational analogy at scale is to learn and leverage weaker structural representations.Comment: KDD 201

    Target Apps Selection: Towards a Unified Search Framework for Mobile Devices

    Full text link
    With the recent growth of conversational systems and intelligent assistants such as Apple Siri and Google Assistant, mobile devices are becoming even more pervasive in our lives. As a consequence, users are getting engaged with the mobile apps and frequently search for an information need in their apps. However, users cannot search within their apps through their intelligent assistants. This requires a unified mobile search framework that identifies the target app(s) for the user's query, submits the query to the app(s), and presents the results to the user. In this paper, we take the first step forward towards developing unified mobile search. In more detail, we introduce and study the task of target apps selection, which has various potential real-world applications. To this aim, we analyze attributes of search queries as well as user behaviors, while searching with different mobile apps. The analyses are done based on thousands of queries that we collected through crowdsourcing. We finally study the performance of state-of-the-art retrieval models for this task and propose two simple yet effective neural models that significantly outperform the baselines. Our neural approaches are based on learning high-dimensional representations for mobile apps. Our analyses and experiments suggest specific future directions in this research area.Comment: To appear at SIGIR 201
    corecore