4,429 research outputs found

    Optimal column layout for hybrid workloads

    Get PDF
    Data-intensive analytical applications need to support both efficient reads and writes. However, what is usually a good data layout for an update-heavy workload, is not well-suited for a read-mostly one and vice versa. Modern analytical data systems rely on columnar layouts and employ delta stores to inject new data and updates. We show that for hybrid workloads we can achieve close to one order of magnitude better performance by tailoring the column layout design to the data and query workload. Our approach navigates the possible design space of the physical layout: it organizes each column’s data by determining the number of partitions, their corresponding sizes and ranges, and the amount of buffer space and how it is allocated. We frame these design decisions as an optimization problem that, given workload knowledge and performance requirements, provides an optimal physical layout for the workload at hand. To evaluate this work, we build an in-memory storage engine, Casper, and we show that it outperforms state-of-the-art data layouts of analytical systems for hybrid workloads. Casper delivers up to 2.32x higher throughput for update-intensive workloads and up to 2.14x higher throughput for hybrid workloads. We further show how to make data layout decisions robust to workload variation by carefully selecting the input of the optimization.http://www.vldb.org/pvldb/vol12/p2393-athanassoulis.pdfPublished versionPublished versio

    Reorganization of columnar architecture in the growing visual cortex

    Full text link
    Many cortical areas increase in size considerably during postnatal development, progressively displacing neuronal cell bodies from each other. At present, little is known about how cortical growth affects the development of neuronal circuits. Here, in acute and chronic experiments, we study the layout of ocular dominance (OD) columns in cat primary visual cortex (V1) during a period of substantial postnatal growth. We find that despite a considerable size increase of V1, the spacing between columns is largely preserved. In contrast, their spatial arrangement changes systematically over this period. While in young animals columns are more band-like, layouts become more isotropic in mature animals. We propose a novel mechanism of growth-induced reorganization that is based on the `zigzag instability', a dynamical instability observed in several inanimate pattern forming systems. We argue that this mechanism is inherent to a wide class of models for the activity-dependent formation of OD columns. Analyzing one member of this class, the Elastic Network model, we show that this mechanism can account for the preservation of column spacing and the specific mode of reorganization of OD columns that we observe. We conclude that neurons systematically shift their selectivities during normal development and that this reorganization is induced by the cortical expansion during growth. Our work suggests that cortical circuits remain plastic for an extended period in development in order to facilitate the modification of neuronal circuits to adjust for cortical growth.Comment: 8+13 pages, 4+8 figures, paper + supplementary materia

    Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?

    Get PDF
    It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moir\'{e}-Interference between hexagonal ON/OFF RGC mosaics. While this Moir\'{e}-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.Comment: 9 figures + 1 Supplementary figure and 1 Supplementary tabl

    Histopathological effects of cypermethrin and Bacillus thuringiensis var. israelensis on midgut of Chironomus calligraphus larvae (Diptera: Chironomidae)

    Get PDF
    Pesticides are extensively used for the control of agricultural pests and disease vectors, but they also affect non-target organisms. Cypermethrin (CYP) is a synthetic pyrethroid used worldwide. Otherwise, bioinsecticides like Bacillus thuringiensis var. israelensis (Bti) have received great attention as an environmentally benign and desirable alternative. In order to evaluate the toxicity of those pesticides, Chironomus calligraphus was selected due to its high sensitivity to some toxicants. Third and fourth instars larvae were exposed to serial dilutions of CYP and Bti to determine LC50 values. In order to evaluate the potentially histopathological alterations as biomarkers, after 96-h of exposure, live larvae were fixed for histological analysis of the mid region of digestive tract. The 96-h LC50 values were 0.52 and 1.506 ÎĽg/L for CYP and Bti, respectively. Midgut histological structure of the control group showed a single layer of cubical cells with microvilli in their apical surface and a big central nucleus. The midgut epithelium of larvae exposed to a low concentration of CYP (0.037 ÎĽg/L) showed secretion activity and vacuolization while at high concentration (0.3 ÎĽg/L) cells showed a greater disorganization and a more developed fat body. On the other hand, Bti caused progressive histological damage in this tissue. Chironomus calligraphus is sensitive to Bti and CYP toxicity like other Chironomus species. The histopathological alterations could be a valuable tool to assess toxicity mechanism of different pesticides.Fil: Lavarias, Sabrina Maria Luisa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de LimnologĂ­a "Dr. RaĂşl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de LimnologĂ­a; ArgentinaFil: Arrighetti, Florencia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Siri, Augusto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de LimnologĂ­a "Dr. RaĂşl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de LimnologĂ­a; Argentin

    Annotating Synapses in Large EM Datasets

    Full text link
    Reconstructing neuronal circuits at the level of synapses is a central problem in neuroscience and becoming a focus of the emerging field of connectomics. To date, electron microscopy (EM) is the most proven technique for identifying and quantifying synaptic connections. As advances in EM make acquiring larger datasets possible, subsequent manual synapse identification ({\em i.e.}, proofreading) for deciphering a connectome becomes a major time bottleneck. Here we introduce a large-scale, high-throughput, and semi-automated methodology to efficiently identify synapses. We successfully applied our methodology to the Drosophila medulla optic lobe, annotating many more synapses than previous connectome efforts. Our approaches are extensible and will make the often complicated process of synapse identification accessible to a wider-community of potential proofreaders

    A Methodology for Evaluating Relational and NoSQL Databases for Small-Scale Storage and Retrieval

    Get PDF
    Modern systems record large quantities of electronic data capturing time-ordered events, system state information, and behavior. Subsequent analysis enables historic and current system status reporting, supports fault investigations, and may provide insight for emerging system trends. Unfortunately, the management of log data requires ever more efficient and complex storage tools to access, manipulate, and retrieve these records. Truly effective solutions also require a well-planned architecture supporting the needs of multiple stakeholders. Historically, database requirements were well-served by relational data models, however modern, non-relational databases, i.e. NoSQL, solutions, initially intended for “big data” distributed system may also provide value for smaller-scale problems such as those required by log data. However, no evaluation method currently exists to adequately compare the capabilities of traditional (relational database) and modern NoSQL solutions for small-scale problems. This research proposes a methodology to evaluate modern data storage and retrieval systems. While the methodology is intended to be generalizable to many data sources, a commercially-produced unmanned aircraft system served as a representative use case to test the methodology for aircraft log data. The research first defined the key characteristics of database technologies and used those characteristics to inform laboratory simulations emulating representative examples of modern database technologies (relational, key-value, columnar, document, and graph). Based on those results, twelve evaluation criteria were proposed to compare the relational and NoSQL database types. The Analytical Hierarchy Process was then used to combine literature findings, laboratory simulations, and user inputs to determine the most suitable database type for the log data use case. The study results demonstrate the efficacy of the proposed methodology
    • …
    corecore