1,748 research outputs found

    On Range Searching with Semialgebraic Sets II

    Full text link
    Let PP be a set of nn points in Rd\R^d. We present a linear-size data structure for answering range queries on PP with constant-complexity semialgebraic sets as ranges, in time close to O(n1−1/d)O(n^{1-1/d}). It essentially matches the performance of similar structures for simplex range searching, and, for d≥5d\ge 5, significantly improves earlier solutions by the first two authors obtained in~1994. This almost settles a long-standing open problem in range searching. The data structure is based on the polynomial-partitioning technique of Guth and Katz [arXiv:1011.4105], which shows that for a parameter rr, 1<r≤n1 < r \le n, there exists a dd-variate polynomial ff of degree O(r1/d)O(r^{1/d}) such that each connected component of Rd∖Z(f)\R^d\setminus Z(f) contains at most n/rn/r points of PP, where Z(f)Z(f) is the zero set of ff. We present an efficient randomized algorithm for computing such a polynomial partition, which is of independent interest and is likely to have additional applications

    Quantum query complexity of minor-closed graph properties

    Get PDF
    We study the quantum query complexity of minor-closed graph properties, which include such problems as determining whether an nn-vertex graph is planar, is a forest, or does not contain a path of a given length. We show that most minor-closed properties---those that cannot be characterized by a finite set of forbidden subgraphs---have quantum query complexity \Theta(n^{3/2}). To establish this, we prove an adversary lower bound using a detailed analysis of the structure of minor-closed properties with respect to forbidden topological minors and forbidden subgraphs. On the other hand, we show that minor-closed properties (and more generally, sparse graph properties) that can be characterized by finitely many forbidden subgraphs can be solved strictly faster, in o(n^{3/2}) queries. Our algorithms are a novel application of the quantum walk search framework and give improved upper bounds for several subgraph-finding problems.Comment: v1: 25 pages, 2 figures. v2: 26 page

    Competitive Boolean Function Evaluation: Beyond Monotonicity, and the Symmetric Case

    Full text link
    We study the extremal competitive ratio of Boolean function evaluation. We provide the first non-trivial lower and upper bounds for classes of Boolean functions which are not included in the class of monotone Boolean functions. For the particular case of symmetric functions our bounds are matching and we exactly characterize the best possible competitiveness achievable by a deterministic algorithm. Our upper bound is obtained by a simple polynomial time algorithm.Comment: 15 pages, 1 figure, to appear in Discrete Applied Mathematic

    Get the Most out of Your Sample: Optimal Unbiased Estimators using Partial Information

    Full text link
    Random sampling is an essential tool in the processing and transmission of data. It is used to summarize data too large to store or manipulate and meet resource constraints on bandwidth or battery power. Estimators that are applied to the sample facilitate fast approximate processing of queries posed over the original data and the value of the sample hinges on the quality of these estimators. Our work targets data sets such as request and traffic logs and sensor measurements, where data is repeatedly collected over multiple {\em instances}: time periods, locations, or snapshots. We are interested in queries that span multiple instances, such as distinct counts and distance measures over selected records. These queries are used for applications ranging from planning to anomaly and change detection. Unbiased low-variance estimators are particularly effective as the relative error decreases with the number of selected record keys. The Horvitz-Thompson estimator, known to minimize variance for sampling with "all or nothing" outcomes (which reveals exacts value or no information on estimated quantity), is not optimal for multi-instance operations for which an outcome may provide partial information. We present a general principled methodology for the derivation of (Pareto) optimal unbiased estimators over sampled instances and aim to understand its potential. We demonstrate significant improvement in estimate accuracy of fundamental queries for common sampling schemes.Comment: This is a full version of a PODS 2011 pape
    • …
    corecore