26 research outputs found

    Rhythmic inhibition allows neural networks to search for maximally consistent states

    Full text link
    Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits yet its computational role still remains elusive. We show that a model of Gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example. The search dynamics driven by rhythmic inhibition enable the described networks to solve difficult constraint satisfaction problems without making assumptions about the form of stochastic fluctuations in the network. We show that the search dynamics are well approximated by a stochastic sampling process. We use the described networks to reproduce perceptual multi-stability phenomena with switching times that are a good match to experimental data and show that they provide a general neural framework which can be used to model other 'perceptual inference' phenomena

    On Neural Associative Memory Structures: Storage and Retrieval of Sequences in a Chain of Tournaments

    Get PDF
    Associative memories enjoy many interesting properties in terms of error correction capabilities, robustness to noise, storage capacity, and retrieval performance, and their usage spans over a large set of applications. In this letter, we investigate and extend tournament-based neural networks, originally proposed by Jiang, Gripon, Berrou, and Rabbat (2016), a novel sequence storage associative memory architecture with high memory efficiency and accurate sequence retrieval. We propose a more general method for learning the sequences, which we call feedback tournament-based neural networks. The retrieval process is also extended to both directions: forward and backward—in other words, any large-enough segment of a sequence can produce the whole sequence. Furthermore, two retrieval algorithms, cache-winner and explore-winner, are introduced to increase the retrieval performance. Through simulation results, we shed light on the strengths and weaknesses of each algorithm.publishedVersio

    Joint Goal Human Robot collaboration-From Remembering to Inferring

    Get PDF
    The ability to infer goals, consequences of one’s own and others’ actions is a critical desirable feature for robots to truly become our companions-thereby opening up applications in several domains. This article proposes the viewpoint that the ability to remember our own past experiences based on present context enables us to infer future consequences of both our actions/goals and observed actions/goals of the other (by analogy). In this context, a biomimetic episodic memory architecture to encode diverse learning experiences of iCub humanoid is presented. The critical feature is that partial cues from the present environment like objects perceived or observed actions of a human triggers a recall of context relevant past experiences thereby enabling the robot to infer rewarding future states and engage in cooperative goal-oriented behaviors. An assembly task jointly done by human and the iCub humanoid is used to illustrate the framework. Link between the proposed framework and emerging results from neurosciences related to shared cortical basis for ‘remembering, imagining and perspective taking’ is discussed

    Searching for collective behavior in a network of real neurons

    Get PDF
    Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such "K-pairwise" models--being systematic extensions of the previously used pairwise Ising models--provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1) estimating its entropy, which constrains the population's capacity to represent visual information; 2) classifying activity patterns into a small set of metastable collective modes; 3) showing that the neural codeword ensembles are extremely inhomogenous; 4) demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.Comment: 24 pages, 19 figure

    Stochastic resonance in the recovery of signal from agent price expectations

    Get PDF
    Contributions that noise can make to the objective of detecting signal in agent expectations for price in financial markets are examined. Although contrary to most assumptions on exogenous noise in financial markets as increasing both risk and uncertainty in the detection of signal, a basis for the contribution that noise can have to agent objectives in signal detection through stochastic resonance (SR) is well-documented across disciplines. After reviewing foundations for the micro-processing of expectations, a multi-component model of networked agents that includes a component of bounded rational processing and a component that has been cited as generating “herding” behavior in financial markets is offered. The signal-to-noise ratios in the proposed models provide a basis to investigate SR in an application to financial markets. Results with both deterministic and stochastic forms of the proposed model support SR as a process in which randomness can contribute to the recovery of signal in agent expectation. Additionally, predictive models that indicate the sensitivity of the occurrence of SR to the parameters of the models of agent expectations were estimated and cross-validated. The discriminative ability of the models is reported through Area Under the Receiver Operating Curve (AUROC) methodology. These results extend the cross-discipline demonstrations of SR to models of price in financial markets.</p

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    corecore