784 research outputs found

    A new structure for difference matrices over abelian pp-groups

    Full text link
    A difference matrix over a group is a discrete structure that is intimately related to many other combinatorial designs, including mutually orthogonal Latin squares, orthogonal arrays, and transversal designs. Interest in constructing difference matrices over 22-groups has been renewed by the recent discovery that these matrices can be used to construct large linking systems of difference sets, which in turn provide examples of systems of linked symmetric designs and association schemes. We survey the main constructive and nonexistence results for difference matrices, beginning with a classical construction based on the properties of a finite field. We then introduce the concept of a contracted difference matrix, which generates a much larger difference matrix. We show that several of the main constructive results for difference matrices over abelian pp-groups can be substantially simplified and extended using contracted difference matrices. In particular, we obtain new linking systems of difference sets of size 77 in infinite families of abelian 22-groups, whereas previously the largest known size was 33.Comment: 27 pages. Discussion of new reference [LT04

    IRPS – An Efficient Test Data Generation Strategy For Pairwise Testing.

    Get PDF
    Software testing is an integral part of software engineering. Lack of testing often leads to disastrous consequences including loss of data, fortunes, and even lives

    Glosarium Matematika

    Get PDF

    Regularized regressions for parametric models based on separated representations

    Get PDF
    Regressions created from experimental or simulated data enable the construction of metamodels, widely used in a variety of engineering applications. Many engineering problems involve multi-parametric physics whose corresponding multi-parametric solutions can be viewed as a sort of computational vademecum that, once computed offline, can be then used in a variety of real-time engineering applications including optimization, inverse analysis, uncertainty propagation or simulation based control. Sometimes, these multi-parametric problems can be solved by using advanced model order reduction—MOR-techniques. However, solving these multi-parametric problems can be very costly. In that case, one possibility consists in solving the problem for a sample of the parametric values and creating a regression from all the computed solutions. The solution for any choice of the parameters is then inferred from the prediction of the regression model. However, addressing high-dimensionality at the low data limit, ensuring accuracy and avoiding overfitting constitutes a difficult challenge. The present paper aims at proposing and discussing different advanced regressions based on the proper generalized decomposition (PGD) enabling the just referred features. In particular, new PGD strategies are developed adding different regularizations to the s-PGD method. In addition, the ANOVA-based PGD is proposed to ally them

    Primitive groups, graph endomorphisms and synchronization

    Get PDF
    The third author has been partially supported by the Fundação para a Ciência e a Tecnologia through the project CEMAT-CIÊNCIAS UID/Multi/04621/2013.Let Ω be a set of cardinality n, G be a permutation group on Ω and f:Ω→Ω be a map that is not a permutation. We say that G synchronizes f if the transformation semigroup ⟨G,f⟩ contains a constant map, and that G is a synchronizing group if G synchronizes every non-permutation.  A synchronizing group is necessarily primitive, but there are primitive groups that are not synchronizing. Every non-synchronizing primitive group fails to synchronize at least one uniform transformation (that is, transformation whose kernel has parts of equal size), and it had previously been conjectured that this was essentially the only way in which a primitive group could fail to be synchronizing, in other words, that a primitive group synchronizes every non-uniform transformation.  The first goal of this paper is to prove that this conjecture is false, by exhibiting primitive groups that fail to synchronize specific non-uniform transformations of ranks 5 and 6. As it has previously been shown that primitive groups synchronize every non-uniform transformation of rank at most 4, these examples are of the lowest possible rank. In addition, we produce graphs with primitive automorphism groups that have approximately √n non-synchronizing ranks, thus refuting another conjecture on the number of non-synchronizing ranks of a primitive group. The second goal of this paper is to extend the spectrum of ranks for which it is known that primitive groups synchronize every non-uniform transformation of that rank. It has previously been shown that a primitive group of degree n synchronizes every non-uniform transformation of rank n−1 and n−2, and here this is extended to n−3 and n−4.  In the process, we will obtain a purely graph-theoretical result showing that, with limited exceptions, in a vertex-primitive graph the union of neighbourhoods of a set of vertices A is bounded below by a function that is asymptotically √|A|. Determining the exact spectrum of ranks for which there exist non-uniform transformations not synchronized by some primitive group is just one of several natural, but possibly difficult, problems on automata, primitive groups, graphs and computational algebra arising from this work; these are outlined in the final section.PostprintPeer reviewe

    Subject Index Volumes 1–200

    Get PDF
    corecore