18,616 research outputs found

    Metric learning applied for automatic large scale image classification

    Get PDF
    In the current Internet world, the numbers of digital images are growing exponentially. As a result, it is very tough to retrieve relevant objects for a given query point. For the past few years, researchers have been contributing different algorithms in the two most common machine learning categories to either cluster or classify images. There are several techniques of supervised classification images depending on the local or global feature representation of images, and on the metric used to calculate the distance (or similarity) between images. Recently many studies have shown the interest to learn a metric rather than use a simple metric a priori (e.g. Euclidean distance). This approach is described in the literature as metric learning. The main objective of this thesis is to use metric learning algorithm in the context of large-scale image classification. In this project, we use a metric learning algorithm which is driven by the nearest neighbors approach and has a competence to improve the generic k Nearest Neighbor (kNN) machine learning algorithm. Even though we get significant improvement on the performance of classification, the computation is very expensive due to the large dimensionality of our input dataset. Thus, we use the dimension reduction technique to reduce dimension and computation time as well. Nevertheless, due to the size of the database, classifying and searching a given query point using metric learning algorithm alone exhaustively is intractable

    Exemplar Based Deep Discriminative and Shareable Feature Learning for Scene Image Classification

    Full text link
    In order to encode the class correlation and class specific information in image representation, we propose a new local feature learning approach named Deep Discriminative and Shareable Feature Learning (DDSFL). DDSFL aims to hierarchically learn feature transformation filter banks to transform raw pixel image patches to features. The learned filter banks are expected to: (1) encode common visual patterns of a flexible number of categories; (2) encode discriminative information; and (3) hierarchically extract patterns at different visual levels. Particularly, in each single layer of DDSFL, shareable filters are jointly learned for classes which share the similar patterns. Discriminative power of the filters is achieved by enforcing the features from the same category to be close, while features from different categories to be far away from each other. Furthermore, we also propose two exemplar selection methods to iteratively select training data for more efficient and effective learning. Based on the experimental results, DDSFL can achieve very promising performance, and it also shows great complementary effect to the state-of-the-art Caffe features.Comment: Pattern Recognition, Elsevier, 201

    Active Object Localization in Visual Situations

    Get PDF
    We describe a method for performing active localization of objects in instances of visual situations. A visual situation is an abstract concept---e.g., "a boxing match", "a birthday party", "walking the dog", "waiting for a bus"---whose image instantiations are linked more by their common spatial and semantic structure than by low-level visual similarity. Our system combines given and learned knowledge of the structure of a particular situation, and adapts that knowledge to a new situation instance as it actively searches for objects. More specifically, the system learns a set of probability distributions describing spatial and other relationships among relevant objects. The system uses those distributions to iteratively sample object proposals on a test image, but also continually uses information from those object proposals to adaptively modify the distributions based on what the system has detected. We test our approach's ability to efficiently localize objects, using a situation-specific image dataset created by our group. We compare the results with several baselines and variations on our method, and demonstrate the strong benefit of using situation knowledge and active context-driven localization. Finally, we contrast our method with several other approaches that use context as well as active search for object localization in images.Comment: 14 page

    Improving Semantic Embedding Consistency by Metric Learning for Zero-Shot Classification

    Full text link
    This paper addresses the task of zero-shot image classification. The key contribution of the proposed approach is to control the semantic embedding of images -- one of the main ingredients of zero-shot learning -- by formulating it as a metric learning problem. The optimized empirical criterion associates two types of sub-task constraints: metric discriminating capacity and accurate attribute prediction. This results in a novel expression of zero-shot learning not requiring the notion of class in the training phase: only pairs of image/attributes, augmented with a consistency indicator, are given as ground truth. At test time, the learned model can predict the consistency of a test image with a given set of attributes , allowing flexible ways to produce recognition inferences. Despite its simplicity, the proposed approach gives state-of-the-art results on four challenging datasets used for zero-shot recognition evaluation.Comment: in ECCV 2016, Oct 2016, amsterdam, Netherlands. 201

    A comparative study of image processing thresholding algorithms on residual oxide scale detection in stainless steel production lines

    Get PDF
    The present work is intended for residual oxide scale detection and classification through the application of image processing techniques. This is a defect that can remain in the surface of stainless steel coils after an incomplete pickling process in a production line. From a previous detailed study over reflectance of residual oxide defect, we present a comparative study of algorithms for image segmentation based on thresholding methods. In particular, two computational models based on multi-linear regression and neural networks will be proposed. A system based on conventional area camera with a special lighting was installed and fully integrated in an annealing and pickling line for model testing purposes. Finally, model approaches will be compared and evaluated their performance..Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore