318 research outputs found

    SoK: Cryptographically Protected Database Search

    Full text link
    Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly; systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions: 1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms. 2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality. 3) An analysis of attacks against protected search for different base queries. 4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.Comment: 20 pages, to appear to IEEE Security and Privac

    GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search

    Full text link
    In this paper, we propose GraphSE2^2, an encrypted graph database for online social network services to address massive data breaches. GraphSE2^2 preserves the functionality of social search, a key enabler for quality social network services, where social search queries are conducted on a large-scale social graph and meanwhile perform set and computational operations on user-generated contents. To enable efficient privacy-preserving social search, GraphSE2^2 provides an encrypted structural data model to facilitate parallel and encrypted graph data access. It is also designed to decompose complex social search queries into atomic operations and realise them via interchangeable protocols in a fast and scalable manner. We build GraphSE2^2 with various queries supported in the Facebook graph search engine and implement a full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that GraphSE2^2 is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search". It includes the security proof of the proposed scheme. If you want to cite our work, please cite the conference version of i

    Secure Remote Storage of Logs with Search Capabilities

    Get PDF
    Dissertação de Mestrado em Engenharia InformáticaAlong side with the use of cloud-based services, infrastructure and storage, the use of application logs in business critical applications is a standard practice nowadays. Such application logs must be stored in an accessible manner in order to used whenever needed. The debugging of these applications is a common situation where such access is required. Frequently, part of the information contained in logs records is sensitive. This work proposes a new approach of storing critical logs in a cloud-based storage recurring to searchable encryption, inverted indexing and hash chaining techniques to achieve, in a unified way, the needed privacy, integrity and authenticity while maintaining server side searching capabilities by the logs owner. The designed search algorithm enables conjunctive keywords queries plus a fine-grained search supported by field searching and nested queries, which are essential in the referred use case. To the best of our knowledge, the proposed solution is also the first to introduce a query language that enables complex conjunctive keywords and a fine-grained search backed by field searching and sub queries.A gerac¸ ˜ao de logs em aplicac¸ ˜oes e a sua posterior consulta s˜ao fulcrais para o funcionamento de qualquer neg´ocio ou empresa. Estes logs podem ser usados para eventuais ac¸ ˜oes de auditoria, uma vez que estabelecem uma baseline das operac¸ ˜oes realizadas. Servem igualmente o prop´ osito de identificar erros, facilitar ac¸ ˜oes de debugging e diagnosticar bottlennecks de performance. Tipicamente, a maioria da informac¸ ˜ao contida nesses logs ´e considerada sens´ıvel. Quando estes logs s˜ao armazenados in-house, as considerac¸ ˜oes relacionadas com anonimizac¸ ˜ao, confidencialidade e integridade s˜ao geralmente descartadas. Contudo, com o advento das plataformas cloud e a transic¸ ˜ao quer das aplicac¸ ˜oes quer dos seus logs para estes ecossistemas, processos de logging remotos, seguros e confidenciais surgem como um novo desafio. Adicionalmente, regulac¸ ˜ao como a RGPD, imp˜oe que as instituic¸ ˜oes e empresas garantam o armazenamento seguro dos dados. A forma mais comum de garantir a confidencialidade consiste na utilizac¸ ˜ao de t ´ecnicas criptogr ´aficas para cifrar a totalidade dos dados anteriormente `a sua transfer ˆencia para o servidor remoto. Caso sejam necess´ arias capacidades de pesquisa, a abordagem mais simples ´e a transfer ˆencia de todos os dados cifrados para o lado do cliente, que proceder´a `a sua decifra e pesquisa sobre os dados decifrados. Embora esta abordagem garanta a confidencialidade e privacidade dos dados, rapidamente se torna impratic ´avel com o crescimento normal dos registos de log. Adicionalmente, esta abordagem n˜ao faz uso do potencial total que a cloud tem para oferecer. Com base nesta tem´ atica, esta tese prop˜oe o desenvolvimento de uma soluc¸ ˜ao de armazenamento de logs operacionais de forma confidencial, integra e autˆ entica, fazendo uso das capacidades de armazenamento e computac¸ ˜ao das plataformas cloud. Adicionalmente, a possibilidade de pesquisa sobre os dados ´e mantida. Essa pesquisa ´e realizada server-side diretamente sobre os dados cifrados e sem acesso em momento algum a dados n˜ao cifrados por parte do servidor..

    Searchable Encryption for Cloud and Distributed Systems

    Get PDF
    The vast development in information and communication technologies has spawned many new computing and storage architectures in the last two decades. Famous for its powerful computation ability and massive storage capacity, cloud services, including storage and computing, replace personal computers and software systems in many industrial applications. Another famous and influential computing and storage architecture is the distributed system, which refers to an array of machines or components geographically dispersed but jointly contributes to a common task, bringing premium scalability, reliability, and efficiency. Recently, the distributed cloud concept has also been proposed to benefit both cloud and distributed computing. Despite the benefits of these new technologies, data security and privacy are among the main concerns that hinder the wide adoption of these attractive architectures since data and computation are not under the control of the end-users in such systems. The traditional security mechanisms, e.g., encryption, cannot fit these new architectures since they would disable the fast access and retrieval of remote storage servers. Thus, an urgent question turns to be how to enable refined and efficient data retrieval on encrypted data among numerous records (i.e., searchable encryption) in the cloud and distributed systems, which forms the topic of this thesis. Searchable encryption technologies can be divided into Searchable Symmetric Encryption (SSE) and Public-key Encryption with Keyword Search (PEKS). The intrinsical symmetric key hinders data sharing since it is problematic and insecure to reveal one’s key to others. However, SSE outperforms PEKS due to its premium efficiency and is thus is prefered in a number of keyword search applications. Then multi-user SSE with rigorous and fine access control undoubtedly renders a satisfactory solution of both efficiency and security, which is the first problem worthy of our much attention. Second, functions and versatility play an essential role in a cloud storage application but it is still tricky to realize keyword search and deduplication in the cloud simultaneously. Large-scale data usually renders significant data redundancy and saving cloud storage resources turns to be inevitable. Existing schemes only facilitate data retrieval due to keywords but rarely consider other demands like deduplication. To be noted, trivially and hastily affiliating a separate deduplication scheme to the searchable encryption leads to disordered system architecture and security threats. Therefore, attention should be paid to versatile solutions supporting both keyword search and deduplication in the cloud. The third problem to be addressed is implementing multi-reader access for PEKS. As we know, PEKS was born to support multi-writers but enabling multi-readers in PEKS is challenging. Repeatedly encrypting the same keyword with different readers’ keys is not an elegant solution. In addition to keyword privacy, user anonymity coming with a multi-reader setting should also be formulated and preserved. Last but not least, existing schemes targeting centralized storage have not taken full advantage of distributed computation, which is considerable efficiency and fast response. Specifically, all testing tasks between searchable ciphertexts and trapdoor/token are fully undertaken by the only centralized cloud server, resulting in a busy system and slow response. With the help of distributed techniques, we may now look forward to a new turnaround, i.e., multiple servers jointly work to perform the testing with better efficiency and scalability. Then the intractable multi-writer/multi-reader mode supporting multi-keyword queries may also come true as a by-product. This thesis investigates searchable encryption technologies in cloud storage and distributed systems and spares effort to address the problems mentioned above. Our first work can be classified into SSE. We formulate the Multi-user Verifiable Searchable Symmetric Encryption (MVSSE) and propose a concrete scheme for multi-user access. It not only offers multi-user access and verifiability but also supports extension on updates as well as a non-single keyword index. Moreover, revocable access control is obtained that the search authority is validated each time a query is launched, different from existing mechanisms that once the search authority is granted, users can search forever. We give simulation-based proof, demonstrating our proposal possesses Universally Composable (UC)-security. Second, we come up with a redundancy elimination solution on top of searchable encryption. Following the keyword comparison approach of SSE, we formulate a hybrid primitive called Message-Locked Searchable Encryption (MLSE) derived in the way of SSE’s keyword search supporting keyword search and deduplication and present a concrete construction that enables multi-keyword query and negative keyword query as well as deduplication at a considerable small cost, i.e., the tokens are used for both search and deduplication. And it can further support Proof of Storage (PoS), testifying the content integrity in cloud storage. The semantic security is proved in Random Oracle Model using the game-based methodology. Third, as the branch of PEKS, the Broadcast Authenticated Encryption with Keyword Search (BAEKS) is proposed to bridge the gap of multi-reader access for PEKS, followed by a scheme. It not only resists Keyword Guessing Attacks (KGA) but also fills in the blank of anonymity. The scheme is proved secure under Decisional Bilinear Diffie-Hellman (DBDH) assumption in the Random Oracle Model. For distributed systems, we present a Searchable Encryption based on Efficient Privacy-preserving Outsourced calculation framework with Multiple keys (SE-EPOM) enjoying desirable features, which can be classified into PEKS. Instead of merely deploying a single server, multiple servers are employed to execute the test algorithm in our scheme jointly. The refined search, i.e., multi-keyword query, data confidentiality, and search pattern hiding, are realized. Besides, the multi-writer/multi-reader mode comes true. It is shown that under the distributed circumstance, much efficiency can be substantially achieved by our construction. With simulation-based proof, the security of our scheme is elaborated. All constructions proposed in this thesis are formally proven according to their corresponding security definitions and requirements. In addition, for each cryptographic primitive designed in this thesis, concrete schemes are initiated to demonstrate the availability and practicality of our proposal

    Secure and Reliable Data Outsourcing in Cloud Computing

    Get PDF
    The many advantages of cloud computing are increasingly attracting individuals and organizations to outsource their data from local to remote cloud servers. In addition to cloud infrastructure and platform providers, such as Amazon, Google, and Microsoft, more and more cloud application providers are emerging which are dedicated to offering more accessible and user friendly data storage services to cloud customers. It is a clear trend that cloud data outsourcing is becoming a pervasive service. Along with the widespread enthusiasm on cloud computing, however, concerns on data security with cloud data storage are arising in terms of reliability and privacy which raise as the primary obstacles to the adoption of the cloud. To address these challenging issues, this dissertation explores the problem of secure and reliable data outsourcing in cloud computing. We focus on deploying the most fundamental data services, e.g., data management and data utilization, while considering reliability and privacy assurance. The first part of this dissertation discusses secure and reliable cloud data management to guarantee the data correctness and availability, given the difficulty that data are no longer locally possessed by data owners. We design a secure cloud storage service which addresses the reliability issue with near-optimal overall performance. By allowing a third party to perform the public integrity verification, data owners are significantly released from the onerous work of periodically checking data integrity. To completely free the data owner from the burden of being online after data outsourcing, we propose an exact repair solution so that no metadata needs to be generated on the fly for the repaired data. The second part presents our privacy-preserving data utilization solutions supporting two categories of semantics - keyword search and graph query. For protecting data privacy, sensitive data has to be encrypted before outsourcing, which obsoletes traditional data utilization based on plaintext keyword search. We define and solve the challenging problem of privacy-preserving multi- keyword ranked search over encrypted data in cloud computing. We establish a set of strict privacy requirements for such a secure cloud data utilization system to become a reality. We first propose a basic idea for keyword search based on secure inner product computation, and then give two improved schemes to achieve various stringent privacy requirements in two different threat models. We also investigate some further enhancements of our ranked search mechanism, including supporting more search semantics, i.e., TF × IDF, and dynamic data operations. As a general data structure to describe the relation between entities, the graph has been increasingly used to model complicated structures and schemaless data, such as the personal social network, the relational database, XML documents and chemical compounds. In the case that these data contains sensitive information and need to be encrypted before outsourcing to the cloud, it is a very challenging task to effectively utilize such graph-structured data after encryption. We define and solve the problem of privacy-preserving query over encrypted graph-structured data in cloud computing. By utilizing the principle of filtering-and-verification, we pre-build a feature-based index to provide feature-related information about each encrypted data graph, and then choose the efficient inner product as the pruning tool to carry out the filtering procedure

    PaaSword: A Data Privacy and Context-aware Security Framework for Developing Secure Cloud Applications - Technical and Scientific Contributions

    Get PDF
    Most industries worldwide have entered a period of reaping the benefits and opportunities cloud offers. At the same time, many efforts are made to address engineering challenges for the secure development of cloud systems and software.With the majority of software engineering projects today relying on the cloud, the task to structure end-to-end secure-by-design cloud systems becomes challenging but at the same time mandatory. The PaaSword project has been commissioned to address security and data privacy in a holistic way by proposing a context-aware security-by-design framework to support software developers in constructing secure applications for the cloud. This chapter presents an overview of the PaaSword project results, including the scientific achievements as well as the description of the technical solution. The benefits offered by the framework are validated through two pilot implementations and conclusions are drawn based on the future research challenges which are discussed in a research agenda
    corecore