8,982 research outputs found

    Disentangling capabilities for industry 4.0 - an information systems capability perspective

    Get PDF
    Digital technologies revolutionise the manufacturing industry by connecting the physical and digital worlds. The resulting paradigm shift, referred to as Industry 4.0, impacts manufacturing processes and business models. While the ‘why’ and ‘what’ of Industry 4.0 have been extensively researched, the ‘how’ remains poorly understood. Manufacturers struggle with exploiting Industry 4.0’s full potential as a holistic understanding of required Information Systems (IS) capabilities is missing. To foster such understanding, we present a holistic IS capability framework for Industry 4.0, including primary and support capabilities. After developing the framework based on a structured literature review, we refined and evaluated it with ten Industry 4.0 experts from research and practice. We demonstrated its use with a German machinery manufacturer. In sum, we contribute to understanding and analysing IS capabilities for Industry 4.0. Our work serves as a foundation for further theorising on Industry 4.0 and for deriving theory-led design recommendations for manufacturers

    Smart Master Production Schedule for the Supply Chain: A Conceptual Framework

    Full text link
    [EN] Risks arising from the effect of disruptions and unsustainable practices constantly push the supply chain to uncompetitive positions. A smart production planning and control process must successfully address both risks by reducing them, thereby strengthening supply chain (SC) resilience and its ability to survive in the long term. On the one hand, the antidisruptive potential and the inherent sustainability implications of the zero-defect manufacturing (ZDM) management model should be highlighted. On the other hand, the digitization and virtualization of processes by Industry 4.0 (I4.0) digital technologies, namely digital twin (DT) technology, enable new simulation and optimization methods, especially in combination with machine learning (ML) procedures. This paper reviews the state of the art and proposes a ZDM strategy-based conceptual framework that models, optimizes and simulates the master production schedule (MPS) problem to maximize service levels in SCs. This conceptual framework will serve as a starting point for developing new MPS optimization models and algorithms in supply chain 4.0 (SC4.0) environments.The research leading to these results received funding from the European Union H2020 Program with grant agreements No. 825631 "Zero-Defect Manufacturing Platform (ZDMP)" and No. 958205 "Industrial Data Services for Quality Control in Smart Manufacturing (i4Q)", and from Grant RTI2018-101344-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe".Serrano-Ruiz, JC.; Mula, J.; Poler, R. (2021). Smart Master Production Schedule for the Supply Chain: A Conceptual Framework. Computers. 10(12):1-24. https://doi.org/10.3390/computers10120156124101

    A data-driven scheduling approach to smart manufacturing

    Get PDF
    Traditional methods of scheduling are mostly based on the use of pieces of information directly related to the performance of schedules, as for instance processing times, delivery dates, etc., assuming that the production system is operating normally. In the case of malfunctions, the literature concentrates on the ensuing corrective operations, like scheduling with machine breakdowns or under remanufacturing considerations. These event-driven approaches are mainly used in dynamic scheduling or rescheduling systems. Unlike those, Smart Manufacturing and Industry 4.0 production environments integrate the physical and decision-making aspects of manufacturing processes in order to achieve their decentralization and autonomy. On these grounds we propose a data-driven architecture for scheduling, in which the system has real time access to data. Then, scheduling decisions can be made ahead of time, on the basis of more information. This promising approach is based on the architecture of cyber-physical systems, with a data-driven engine that uses, in particular, Big Data techniques to extract vital information for Industry 4.0 systems.Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Tohmé, Fernando Abel. Universidad Nacional del Sur. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentin

    A Systematic Review of Marketing Practices Used in Online Grocery Shopping: Implications for WIC Online Ordering

    Get PDF
    The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) plans to allow participants to redeem their food package benefits online, i.e., online ordering. As grocery shopping online has become more common, companies have developed strategies to market food products to customers using online (or mobile) grocery shopping platforms. There is a significant knowledge gap in how these strategies may influence WIC participants who choose to shop for WIC foods online. This review examines the relevant literature to (1) identify food marketing strategies used in online grocery shopping platforms, (2) understand how these strategies influence consumer behavior and consumer diet, and (3) consider the implications for WIC participants. A total of 1862 references were identified from a systematic database search, of which 83 were included for full-text screening and 18 were included for data extraction and evidence synthesis. The included studies provide policymakers and other stakeholders involved in developing WIC online order processes with valuable information about the factors that shape healthy food choices in the online food retail environment. Findings indicate that some marketing interventions, such as nutrition labeling and food swaps, may encourage healthier food choices in the online environment and could potentially be tailored to reinforce WIC messaging about a healthy diet

    Industrial Artificial Intelligence in Industry 4.0 - Systematic Review, Challenges and Outlook

    Get PDF
    UIDB/00066/2020The advent of the Industry 4.0 initiative has made it so that manufacturing environments are becoming more and more dynamic, connected but also inherently more complex, with additional inter-dependencies, uncertainties and large volumes of data being generated. Recent advances in Industrial Artificial Intelligence have showcased the potential of this technology to assist manufacturers in tackling the challenges associated with this digital transformation of Cyber-Physical Systems, through its data-driven predictive analytics and capacity to assist decision-making in highly complex, non-linear and often multistage environments. However, the industrial adoption of such solutions is still relatively low beyond the experimental pilot stage, as real environments provide unique and difficult challenges for which organizations are still unprepared. The aim of this paper is thus two-fold. First, a systematic review of current Industrial Artificial Intelligence literature is presented, focusing on its application in real manufacturing environments to identify the main enabling technologies and core design principles. Then, a set of key challenges and opportunities to be addressed by future research efforts are formulated along with a conceptual framework to bridge the gap between research in this field and the manufacturing industry, with the goal of promoting industrial adoption through a successful transition towards a digitized and data-driven company-wide culture. This paper is among the first to provide a clear definition and holistic view of Industrial Artificial Intelligence in the Industry 4.0 landscape, identifying and analysing its fundamental building blocks and ongoing trends. Its findings are expected to assist and empower researchers and manufacturers alike to better understand the requirements and steps necessary for a successful transition into Industry 4.0 supported by AI, as well as the challenges that may arise during this process.publishersversionepub_ahead_of_prin

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Opportunities for the digital transformation of the banana sector supply chain based on software with artificial intelligence

    Get PDF
    Artificial intelligence offers great opportunities for the supply chain, being this a competitive advantage for today’s changing market. This article aims to identify the impacts and opportunities that artificial intelligence software can offer to facilitate the operation and improve the performance of the supply chain in the banana sector in Colombia. The work methodology consists of six steps in which a total of 72 investigations were obtained. The sources of information were four databases. As a main conclusion, the supply chain of the banana sector has everything necessary for intelligent software based solutions to be implemented in order to achieve adaptation, flexibility and sensitivity to the context and domain of execution
    • …
    corecore