5,091 research outputs found

    Evolutionary Robot Vision for People Tracking Based on Local Clustering

    Get PDF
    This paper discusses the role of evolutionary computation in visual perception for partner robots. The search of evolutionary computation has many analogies with human visual search. First of all, we discuss the analogies between the evolutionary search and human visual search. Next, we propose the concept of evolutionary robot vision, and a human tracking method based on the evolutionary robot vision. Finally, we show experimental results of the human tracking to discuss the effectiveness of our proposed method

    A brief network analysis of Artificial Intelligence publication

    Full text link
    In this paper, we present an illustration to the history of Artificial Intelligence(AI) with a statistical analysis of publish since 1940. We collected and mined through the IEEE publish data base to analysis the geological and chronological variance of the activeness of research in AI. The connections between different institutes are showed. The result shows that the leading community of AI research are mainly in the USA, China, the Europe and Japan. The key institutes, authors and the research hotspots are revealed. It is found that the research institutes in the fields like Data Mining, Computer Vision, Pattern Recognition and some other fields of Machine Learning are quite consistent, implying a strong interaction between the community of each field. It is also showed that the research of Electronic Engineering and Industrial or Commercial applications are very active in California. Japan is also publishing a lot of papers in robotics. Due to the limitation of data source, the result might be overly influenced by the number of published articles, which is to our best improved by applying network keynode analysis on the research community instead of merely count the number of publish.Comment: 18 pages, 7 figure

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Application of multiobjective genetic programming to the design of robot failure recognition systems

    Get PDF
    We present an evolutionary approach using multiobjective genetic programming (MOGP) to derive optimal feature extraction preprocessing stages for robot failure detection. This data-driven machine learning method is compared both with conventional (nonevolutionary) classifiers and a set of domain-dependent feature extraction methods. We conclude MOGP is an effective and practical design method for failure recognition systems with enhanced recognition accuracy over conventional classifiers, independent of domain knowledge

    A genetic algorithm based task scheduling system for logistics service robots

    Get PDF
    The demand for autonomous logistics service robots requires an efficient task scheduling system in order to optimise cost and time for the robot to complete its tasks. This paper presents a Genetic algorithm (GA) based task scheduling system for a ground mobile robot that is able to find a global near-optimal travelling path to complete a logistics task of pick-and-deliver items at various locations. In this study, the chromosome representation and the fitness function of GA is carefully designed to cater for a single load logistics robotic task. Two variants of GA crossover are adopted to enhance the performance of the proposed algorithm. The performance of the scheduling is compared and analysed between the proposed GA algorithms and a conventional greedy algorithm in a virtual map and a real map environments that turns out the proposed GA algorithms outperform the greedy algorithm by 40% to 80% improvement

    Hybrid approaches for mobile robot navigation

    Get PDF
    The work described in this thesis contributes to the efficient solution of mobile robot navigation problems. A series of new evolutionary approaches is presented. Two novel evolutionary planners have been developed that reduce the computational overhead in generating plans of mobile robot movements. In comparison with the best-performing evolutionary scheme reported in the literature, the first of the planners significantly reduces the plan calculation time in static environments. The second planner was able to generate avoidance strategies in response to unexpected events arising from the presence of moving obstacles. To overcome limitations in responsiveness and the unrealistic assumptions regarding a priori knowledge that are inherent in planner-based and a vigation systems, subsequent work concentrated on hybrid approaches. These included a reactive component to identify rapidly and autonomously environmental features that were represented by a small number of critical waypoints. Not only is memory usage dramatically reduced by such a simplified representation, but also the calculation time to determine new plans is significantly reduced. Further significant enhancements of this work were firstly, dynamic avoidance to limit the likelihood of potential collisions with moving obstacles and secondly, exploration to identify statistically the dynamic characteristics of the environment. Finally, by retaining more extensive environmental knowledge gained during previous navigation activities, the capability of the hybrid navigation system was enhanced to allow planning to be performed for any start point and goal point

    Cellular Automata Applications in Shortest Path Problem

    Full text link
    Cellular Automata (CAs) are computational models that can capture the essential features of systems in which global behavior emerges from the collective effect of simple components, which interact locally. During the last decades, CAs have been extensively used for mimicking several natural processes and systems to find fine solutions in many complex hard to solve computer science and engineering problems. Among them, the shortest path problem is one of the most pronounced and highly studied problems that scientists have been trying to tackle by using a plethora of methodologies and even unconventional approaches. The proposed solutions are mainly justified by their ability to provide a correct solution in a better time complexity than the renowned Dijkstra's algorithm. Although there is a wide variety regarding the algorithmic complexity of the algorithms suggested, spanning from simplistic graph traversal algorithms to complex nature inspired and bio-mimicking algorithms, in this chapter we focus on the successful application of CAs to shortest path problem as found in various diverse disciplines like computer science, swarm robotics, computer networks, decision science and biomimicking of biological organisms' behaviour. In particular, an introduction on the first CA-based algorithm tackling the shortest path problem is provided in detail. After the short presentation of shortest path algorithms arriving from the relaxization of the CAs principles, the application of the CA-based shortest path definition on the coordinated motion of swarm robotics is also introduced. Moreover, the CA based application of shortest path finding in computer networks is presented in brief. Finally, a CA that models exactly the behavior of a biological organism, namely the Physarum's behavior, finding the minimum-length path between two points in a labyrinth is given.Comment: To appear in the book: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201
    • …
    corecore