932 research outputs found

    Integer symmetric matrices having all their eigenvalues in the interval [-2,2]

    Get PDF
    We completely describe all integer symmetric matrices that have all their eigenvalues in the interval [-2,2]. Along the way we classify all signed graphs, and then all charged signed graphs, having all their eigenvalues in this same interval. We then classify subsets of the above for which the integer symmetric matrices, signed graphs and charged signed graphs have all their eigenvalues in the open interval (-2,2).Comment: 33 pages, 18 figure

    Lehmer's conjecture for Hermitian matrices over the Eisenstein and Gaussian integers

    Get PDF
    We solve Lehmer's problem for a class of polynomials arising from Hermitian matrices over the Eisenstein and Gaussian integers, that is, we show that all such polynomials have Mahler measure at least Lehmer's number \tau_0 = 1.17628...

    Growth rates of permutation classes: categorization up to the uncountability threshold

    Full text link
    In the antecedent paper to this it was established that there is an algebraic number ξ≈2.30522\xi\approx 2.30522 such that while there are uncountably many growth rates of permutation classes arbitrarily close to ξ\xi, there are only countably many less than ξ\xi. Here we provide a complete characterization of the growth rates less than ξ\xi. In particular, this classification establishes that ξ\xi is the least accumulation point from above of growth rates and that all growth rates less than or equal to ξ\xi are achieved by finitely based classes. A significant part of this classification is achieved via a reconstruction result for sum indecomposable permutations. We conclude by refuting a suggestion of Klazar, showing that ξ\xi is an accumulation point from above of growth rates of finitely based permutation classes.Comment: To appear in Israel J. Mat

    The phantom menace in representation theory

    Full text link
    Our principal goal in this overview is to explain and motivate the concept of a phantom in the representation theory of a finite dimensional algebra Λ\Lambda. In particular, we exhibit the key role of phantoms towards understanding how a full subcategory A\cal A of the category Λ-mod\Lambda\text{-mod} of all finitely generated left Λ\Lambda-modules is embedded into Λ-mod\Lambda\text{-mod}, in terms of maps leaving or entering A\cal A. Contents: 1. Introduction and prerequisites; 2. Contravariant finiteness and first examples; 3. Homological importance of contravariant finiteness and a model application of the theory; 4. Phantoms. Definitions, existence, and basic properties; 5. An application: Phantoms over string algebras

    Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with respect to the {I,H,N}^n Transform

    Full text link
    We enumerate the inequivalent self-dual additive codes over GF(4) of blocklength n, thereby extending the sequence A090899 in The On-Line Encyclopedia of Integer Sequences from n = 9 to n = 12. These codes have a well-known interpretation as quantum codes. They can also be represented by graphs, where a simple graph operation generates the orbits of equivalent codes. We highlight the regularity and structure of some graphs that correspond to codes with high distance. The codes can also be interpreted as quadratic Boolean functions, where inequivalence takes on a spectral meaning. In this context we define PAR_IHN, peak-to-average power ratio with respect to the {I,H,N}^n transform set. We prove that PAR_IHN of a Boolean function is equivalent to the the size of the maximum independent set over the associated orbit of graphs. Finally we propose a construction technique to generate Boolean functions with low PAR_IHN and algebraic degree higher than 2.Comment: Presented at Sequences and Their Applications, SETA'04, Seoul, South Korea, October 2004. 17 pages, 10 figure

    Graph-Based Classification of Self-Dual Additive Codes over Finite Fields

    Full text link
    Quantum stabilizer states over GF(m) can be represented as self-dual additive codes over GF(m^2). These codes can be represented as weighted graphs, and orbits of graphs under the generalized local complementation operation correspond to equivalence classes of codes. We have previously used this fact to classify self-dual additive codes over GF(4). In this paper we classify self-dual additive codes over GF(9), GF(16), and GF(25). Assuming that the classical MDS conjecture holds, we are able to classify all self-dual additive MDS codes over GF(9) by using an extension technique. We prove that the minimum distance of a self-dual additive code is related to the minimum vertex degree in the associated graph orbit. Circulant graph codes are introduced, and a computer search reveals that this set contains many strong codes. We show that some of these codes have highly regular graph representations.Comment: 20 pages, 13 figure

    Brick polytopes, lattice quotients, and Hopf algebras

    Get PDF
    This paper is motivated by the interplay between the Tamari lattice, J.-L. Loday's realization of the associahedron, and J.-L. Loday and M. Ronco's Hopf algebra on binary trees. We show that these constructions extend in the world of acyclic kk-triangulations, which were already considered as the vertices of V. Pilaud and F. Santos' brick polytopes. We describe combinatorially a natural surjection from the permutations to the acyclic kk-triangulations. We show that the fibers of this surjection are the classes of the congruence ≡k\equiv^k on Sn\mathfrak{S}_n defined as the transitive closure of the rewriting rule UacV1b1⋯VkbkW≡kUcaV1b1⋯VkbkWU ac V_1 b_1 \cdots V_k b_k W \equiv^k U ca V_1 b_1 \cdots V_k b_k W for letters a<b1,…,bk<ca < b_1, \dots, b_k < c and words U,V1,…,Vk,WU, V_1, \dots, V_k, W on [n][n]. We then show that the increasing flip order on kk-triangulations is the lattice quotient of the weak order by this congruence. Moreover, we use this surjection to define a Hopf subalgebra of C. Malvenuto and C. Reutenauer's Hopf algebra on permutations, indexed by acyclic kk-triangulations, and to describe the product and coproduct in this algebra and its dual in term of combinatorial operations on acyclic kk-triangulations. Finally, we extend our results in three directions, describing a Cambrian, a tuple, and a Schr\"oder version of these constructions.Comment: 59 pages, 32 figure

    On the Classification of All Self-Dual Additive Codes over GF(4) of Length up to 12

    Get PDF
    We consider additive codes over GF(4) that are self-dual with respect to the Hermitian trace inner product. Such codes have a well-known interpretation as quantum codes and correspond to isotropic systems. It has also been shown that these codes can be represented as graphs, and that two codes are equivalent if and only if the corresponding graphs are equivalent with respect to local complementation and graph isomorphism. We use these facts to classify all codes of length up to 12, where previously only all codes of length up to 9 were known. We also classify all extremal Type II codes of length 14. Finally, we find that the smallest Type I and Type II codes with trivial automorphism group have length 9 and 12, respectively.Comment: 18 pages, 4 figure
    • …
    corecore