4,200 research outputs found

    Adaptive K-means algorithm for overlapped graph clustering

    Full text link
    Electronic version of an article published as International Journal of Neural Systems 2, 5, 2012, DOI: 10.1142/S0129065712500189 © 2012 copyright World Scientific Publishing CompanyThe graph clustering problem has become highly relevant due to the growing interest of several research communities in social networks and their possible applications. Overlapped graph clustering algorithms try to find subsets of nodes that can belong to different clusters. In social network-based applications it is quite usual for a node of the network to belong to different groups, or communities, in the graph. Therefore, algorithms trying to discover, or analyze, the behavior of these networks needed to handle this feature, detecting and identifying the overlapped nodes. This paper shows a soft clustering approach based on a genetic algorithm where a new encoding is designed to achieve two main goals: first, the automatic adaptation of the number of communities that can be detected and second, the definition of several fitness functions that guide the searching process using some measures extracted from graph theory. Finally, our approach has been experimentally tested using the Eurovision contest dataset, a well-known social-based data network, to show how overlapped communities can be found using our method.This work has been partly supported by: Spanish Ministry of Science and Education under project TIN2010-19872 and the grant BES-2011-049875 from the same Ministry

    Deep Learning in Social Networks for Overlappering Community Detection

    Get PDF
    The collection of nodes is termed as community in any network system that are tightly associated to the other nodes. In network investigation, identifying the community structure is crucial task, particularly for exposing connections between certain nodes. For community overlapping, network discovery, there are numerous methodologies described in the literature. Numerous scholars have recently focused on network embedding and feature learning techniques for node clustering. These techniques translate the network into a representation space with fewer dimensions. In this paper, a deep neural network-based model for learning graph representation and stacked auto-encoders are given a nonlinear embedding of the original graph to learn the model. In order to extract overlapping communities, an AEOCDSN algorithm is used. The efficiency of the suggested model is examined through experiments on real-world datasets of various sizes and accepted standards. The method outperforms various well-known community detection techniques, according to empirical findings

    Recognition of Marathi Newsprint Text Using Neural Network and Genetic Algorithm

    Get PDF
    Now a day there are many new methodologies required for the increasing needs in newly emerging areas, with this methodologies there are many techniques are present for the character recognition of handprint Devanagri, Bengali, Tamil, China etc. But very little research is for printed material. So in our project we propose the recognition of devnagari printed text using neural network and genetic algorithm. In India, more than 300 million people use Devanagari script for documentation. There has been a significant improvement in the research related to the recognition of printed as well as handwritten Devanagari text in the past few years.. All feature-extraction techniques as well as training, classification and matching techniques useful for the recognition are discussed in various sections of the paper. An attempt is made to address the most important results reported so far and it is also tried to highlight the beneficial directions of the research till date. Moreover, the paper also contains a comprehensive bibliography of many selected papers appeared in reputed journals and conference proceedings as an aid for the researchers working in the field of Devanagari printed text using neural network and genetic algorithm. DOI: 10.17762/ijritcc2321-8169.160411

    A maximal clique based multiobjective evolutionary algorithm for overlapping community detection

    Get PDF
    Detecting community structure has become one im-portant technique for studying complex networks. Although many community detection algorithms have been proposed, most of them focus on separated communities, where each node can be-long to only one community. However, in many real-world net-works, communities are often overlapped with each other. De-veloping overlapping community detection algorithms thus be-comes necessary. Along this avenue, this paper proposes a maxi-mal clique based multiobjective evolutionary algorithm for over-lapping community detection. In this algorithm, a new represen-tation scheme based on the introduced maximal-clique graph is presented. Since the maximal-clique graph is defined by using a set of maximal cliques of original graph as nodes and two maximal cliques are allowed to share the same nodes of the original graph, overlap is an intrinsic property of the maximal-clique graph. Attributing to this property, the new representation scheme al-lows multiobjective evolutionary algorithms to handle the over-lapping community detection problem in a way similar to that of the separated community detection, such that the optimization problems are simplified. As a result, the proposed algorithm could detect overlapping community structure with higher partition accuracy and lower computational cost when compared with the existing ones. The experiments on both synthetic and real-world networks validate the effectiveness and efficiency of the proposed algorithm

    ESPRIT-Tree: hierarchical clustering analysis of millions of 16S rRNA pyrosequences in quasilinear computational time

    Get PDF
    Taxonomy-independent analysis plays an essential role in microbial community analysis. Hierarchical clustering is one of the most widely employed approaches to finding operational taxonomic units, the basis for many downstream analyses. Most existing algorithms have quadratic space and computational complexities, and thus can be used only for small or medium-scale problems. We propose a new online learning-based algorithm that simultaneously addresses the space and computational issues of prior work. The basic idea is to partition a sequence space into a set of subspaces using a partition tree constructed using a pseudometric, then recursively refine a clustering structure in these subspaces. The technique relies on new methods for fast closest-pair searching and efficient dynamic insertion and deletion of tree nodes. To avoid exhaustive computation of pairwise distances between clusters, we represent each cluster of sequences as a probabilistic sequence, and define a set of operations to align these probabilistic sequences and compute genetic distances between them. We present analyses of space and computational complexity, and demonstrate the effectiveness of our new algorithm using a human gut microbiota data set with over one million sequences. The new algorithm exhibits a quasilinear time and space complexity comparable to greedy heuristic clustering algorithms, while achieving a similar accuracy to the standard hierarchical clustering algorithm
    corecore