380,062 research outputs found

    Efficient Database Generation for Data-driven Security Assessment of Power Systems

    Full text link
    Power system security assessment methods require large datasets of operating points to train or test their performance. As historical data often contain limited number of abnormal situations, simulation data are necessary to accurately determine the security boundary. Generating such a database is an extremely demanding task, which becomes intractable even for small system sizes. This paper proposes a modular and highly scalable algorithm for computationally efficient database generation. Using convex relaxation techniques and complex network theory, we discard large infeasible regions and drastically reduce the search space. We explore the remaining space by a highly parallelizable algorithm and substantially decrease computation time. Our method accommodates numerous definitions of power system security. Here we focus on the combination of N-k security and small-signal stability. Demonstrating our algorithm on IEEE 14-bus and NESTA 162-bus systems, we show how it outperforms existing approaches requiring less than 10% of the time other methods require.Comment: Database publicly available at: https://github.com/johnnyDEDK/OPs_Nesta162Bus - Paper accepted for publication at IEEE Transactions on Power System

    Simultaneous Distribution Network Reconfiguration and Optimal Placement of Distributed Generation

    Get PDF
    A reliable, eco- and nature-friendly operation has been the major concern of modern power system (PS). To improve the PS reliability and reduce the adverse environmental effect of conventional thermal generation facilities, renewable energy based distributed generation (RDG) are being enormously integrated to low and medium voltage distribution networks (DN). However, if these systems are not properly deployed, the reliability and stability of the PS will be endangered and its quality can be dreadfully jeopardized. Among the measures taken to avoid such is optimizing the location and size of each RDG unit in the DNs. These networks are generally operated in a radial configuration, though they can be reconfigured to other topologies to achieve certain objectives. Both RDG placement/sizing and DN reconfiguration are highly non-linear, multi-objective, constrained and combinatorial optimization problems. In this study, a hybrid of Particle Swarm Optimization (PSO) and real-coded Genetic Algorithm (GA) techniques is employed for DN reconfiguration and optimal allocation (size and location) of multiple RDG units in primary DNs simultaneously. The objectives of the proposed technique are active power loss reduction, voltage profile (VP) and feeder load balancing (LB) improvement. It is carried out subject to some technical constraints, with the search space being the set of DN branches, DG sizes and potential locations.  To ascertain the effectiveness of the technique, it is implemented on standard IEEE 16-bus, 33-bus and 69-bus test DNs. The proposed algorithm is implemented in MATLAB and MATPOWER environments. It is observed the power loss, voltage deviation and LB are found to be reduced by 32.84%, 12.33% and 24.03% of their respective inherent values in the biggest system when the system is reconfigured only. With the optimized RDGs placed in the reconfigured systems, a further reductions of 46.27%, 25.92% and 36.65% are observed respectively. &nbsp

    Swarm Intelligence Based Multi-phase OPF For Peak Power Loss Reduction In A Smart Grid

    Full text link
    Recently there has been increasing interest in improving smart grids efficiency using computational intelligence. A key challenge in future smart grid is designing Optimal Power Flow tool to solve important planning problems including optimal DG capacities. Although, a number of OPF tools exists for balanced networks there is a lack of research for unbalanced multi-phase distribution networks. In this paper, a new OPF technique has been proposed for the DG capacity planning of a smart grid. During the formulation of the proposed algorithm, multi-phase power distribution system is considered which has unbalanced loadings, voltage control and reactive power compensation devices. The proposed algorithm is built upon a co-simulation framework that optimizes the objective by adapting a constriction factor Particle Swarm optimization. The proposed multi-phase OPF technique is validated using IEEE 8500-node benchmark distribution system.Comment: IEEE PES GM 2014, Washington DC, US

    Insight into High-quality Aerodynamic Design Spaces through Multi-objective Optimization

    Get PDF
    An approach to support the computational aerodynamic design process is presented and demonstrated through the application of a novel multi-objective variant of the Tabu Search optimization algorithm for continuous problems to the aerodynamic design optimization of turbomachinery blades. The aim is to improve the performance of a specific stage and ultimately of the whole engine. The integrated system developed for this purpose is described. This combines the optimizer with an existing geometry parameterization scheme and a well- established CFD package. The system’s performance is illustrated through case studies – one two-dimensional, one three-dimensional – in which flow characteristics important to the overall performance of turbomachinery blades are optimized. By showing the designer the trade-off surfaces between the competing objectives, this approach provides considerable insight into the design space under consideration and presents the designer with a range of different Pareto-optimal designs for further consideration. Special emphasis is given to the dimensionality in objective function space of the optimization problem, which seeks designs that perform well for a range of flow performance metrics. The resulting compressor blades achieve their high performance by exploiting complicated physical mechanisms successfully identified through the design process. The system can readily be run on parallel computers, substantially reducing wall-clock run times – a significant benefit when tackling computationally demanding design problems. Overall optimal performance is offered by compromise designs on the Pareto trade-off surface revealed through a true multi-objective design optimization test case. Bearing in mind the continuing rapid advances in computing power and the benefits discussed, this approach brings the adoption of such techniques in real-world engineering design practice a ste

    Approximated Computation of Belief Functions for Robust Design Optimization

    Get PDF
    This paper presents some ideas to reduce the computational cost of evidence-based robust design optimization. Evidence Theory crystallizes both the aleatory and epistemic uncertainties in the design parameters, providing two quantitative measures, Belief and Plausibility, of the credibility of the computed value of the design budgets. The paper proposes some techniques to compute an approximation of Belief and Plausibility at a cost that is a fraction of the one required for an accurate calculation of the two values. Some simple test cases will show how the proposed techniques scale with the dimension of the problem. Finally a simple example of spacecraft system design is presented.Comment: AIAA-2012-1932 14th AIAA Non-Deterministic Approaches Conference. 23-26 April 2012 Sheraton Waikiki, Honolulu, Hawai

    Particle Swarm Optimization Framework for Low Power Testing of VLSI Circuits

    Full text link
    Power dissipation in sequential circuits is due to increased toggling count of Circuit under Test, which depends upon test vectors applied. If successive test vectors sequences have more toggling nature then it is sure that toggling rate of flip flops is higher. Higher toggling for flip flops results more power dissipation. To overcome this problem, one method is to use GA to have test vectors of high fault coverage in short interval, followed by Hamming distance management on test patterns. This approach is time consuming and needs more efforts. Another method which is purposed in this paper is a PSO based Frame Work to optimize power dissipation. Here target is to set the entire test vector in a frame for time period 'T', so that the frame consists of all those vectors strings which not only provide high fault coverage but also arrange vectors in frame to produce minimum toggling

    PlaceRaider: Virtual Theft in Physical Spaces with Smartphones

    Full text link
    As smartphones become more pervasive, they are increasingly targeted by malware. At the same time, each new generation of smartphone features increasingly powerful onboard sensor suites. A new strain of sensor malware has been developing that leverages these sensors to steal information from the physical environment (e.g., researchers have recently demonstrated how malware can listen for spoken credit card numbers through the microphone, or feel keystroke vibrations using the accelerometer). Yet the possibilities of what malware can see through a camera have been understudied. This paper introduces a novel visual malware called PlaceRaider, which allows remote attackers to engage in remote reconnaissance and what we call virtual theft. Through completely opportunistic use of the camera on the phone and other sensors, PlaceRaider constructs rich, three dimensional models of indoor environments. Remote burglars can thus download the physical space, study the environment carefully, and steal virtual objects from the environment (such as financial documents, information on computer monitors, and personally identifiable information). Through two human subject studies we demonstrate the effectiveness of using mobile devices as powerful surveillance and virtual theft platforms, and we suggest several possible defenses against visual malware
    corecore