3,815 research outputs found

    Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for Low-power Neuromorphic Hardware

    Full text link
    In recent years the field of neuromorphic low-power systems that consume orders of magnitude less power gained significant momentum. However, their wider use is still hindered by the lack of algorithms that can harness the strengths of such architectures. While neuromorphic adaptations of representation learning algorithms are now emerging, efficient processing of temporal sequences or variable length-inputs remain difficult. Recurrent neural networks (RNN) are widely used in machine learning to solve a variety of sequence learning tasks. In this work we present a train-and-constrain methodology that enables the mapping of machine learned (Elman) RNNs on a substrate of spiking neurons, while being compatible with the capabilities of current and near-future neuromorphic systems. This "train-and-constrain" method consists of first training RNNs using backpropagation through time, then discretizing the weights and finally converting them to spiking RNNs by matching the responses of artificial neurons with those of the spiking neurons. We demonstrate our approach by mapping a natural language processing task (question classification), where we demonstrate the entire mapping process of the recurrent layer of the network on IBM's Neurosynaptic System "TrueNorth", a spike-based digital neuromorphic hardware architecture. TrueNorth imposes specific constraints on connectivity, neural and synaptic parameters. To satisfy these constraints, it was necessary to discretize the synaptic weights and neural activities to 16 levels, and to limit fan-in to 64 inputs. We find that short synaptic delays are sufficient to implement the dynamical (temporal) aspect of the RNN in the question classification task. The hardware-constrained model achieved 74% accuracy in question classification while using less than 0.025% of the cores on one TrueNorth chip, resulting in an estimated power consumption of ~17 uW

    Evolution and Analysis of Embodied Spiking Neural Networks Reveals Task-Specific Clusters of Effective Networks

    Full text link
    Elucidating principles that underlie computation in neural networks is currently a major research topic of interest in neuroscience. Transfer Entropy (TE) is increasingly used as a tool to bridge the gap between network structure, function, and behavior in fMRI studies. Computational models allow us to bridge the gap even further by directly associating individual neuron activity with behavior. However, most computational models that have analyzed embodied behaviors have employed non-spiking neurons. On the other hand, computational models that employ spiking neural networks tend to be restricted to disembodied tasks. We show for the first time the artificial evolution and TE-analysis of embodied spiking neural networks to perform a cognitively-interesting behavior. Specifically, we evolved an agent controlled by an Izhikevich neural network to perform a visual categorization task. The smallest networks capable of performing the task were found by repeating evolutionary runs with different network sizes. Informational analysis of the best solution revealed task-specific TE-network clusters, suggesting that within-task homogeneity and across-task heterogeneity were key to behavioral success. Moreover, analysis of the ensemble of solutions revealed that task-specificity of TE-network clusters correlated with fitness. This provides an empirically testable hypothesis that links network structure to behavior.Comment: Camera ready version of accepted for GECCO'1

    Biologically plausible deep learning -- but how far can we go with shallow networks?

    Get PDF
    Training deep neural networks with the error backpropagation algorithm is considered implausible from a biological perspective. Numerous recent publications suggest elaborate models for biologically plausible variants of deep learning, typically defining success as reaching around 98% test accuracy on the MNIST data set. Here, we investigate how far we can go on digit (MNIST) and object (CIFAR10) classification with biologically plausible, local learning rules in a network with one hidden layer and a single readout layer. The hidden layer weights are either fixed (random or random Gabor filters) or trained with unsupervised methods (PCA, ICA or Sparse Coding) that can be implemented by local learning rules. The readout layer is trained with a supervised, local learning rule. We first implement these models with rate neurons. This comparison reveals, first, that unsupervised learning does not lead to better performance than fixed random projections or Gabor filters for large hidden layers. Second, networks with localized receptive fields perform significantly better than networks with all-to-all connectivity and can reach backpropagation performance on MNIST. We then implement two of the networks - fixed, localized, random & random Gabor filters in the hidden layer - with spiking leaky integrate-and-fire neurons and spike timing dependent plasticity to train the readout layer. These spiking models achieve > 98.2% test accuracy on MNIST, which is close to the performance of rate networks with one hidden layer trained with backpropagation. The performance of our shallow network models is comparable to most current biologically plausible models of deep learning. Furthermore, our results with a shallow spiking network provide an important reference and suggest the use of datasets other than MNIST for testing the performance of future models of biologically plausible deep learning.Comment: 14 pages, 4 figure

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Seeing into Darkness: Scotopic Visual Recognition

    Get PDF
    Images are formed by counting how many photons traveling from a given set of directions hit an image sensor during a given time interval. When photons are few and far in between, the concept of `image' breaks down and it is best to consider directly the flow of photons. Computer vision in this regime, which we call `scotopic', is radically different from the classical image-based paradigm in that visual computations (classification, control, search) have to take place while the stream of photons is captured and decisions may be taken as soon as enough information is available. The scotopic regime is important for biomedical imaging, security, astronomy and many other fields. Here we develop a framework that allows a machine to classify objects with as few photons as possible, while maintaining the error rate below an acceptable threshold. A dynamic and asymptotically optimal speed-accuracy tradeoff is a key feature of this framework. We propose and study an algorithm to optimize the tradeoff of a convolutional network directly from lowlight images and evaluate on simulated images from standard datasets. Surprisingly, scotopic systems can achieve comparable classification performance as traditional vision systems while using less than 0.1% of the photons in a conventional image. In addition, we demonstrate that our algorithms work even when the illuminance of the environment is unknown and varying. Last, we outline a spiking neural network coupled with photon-counting sensors as a power-efficient hardware realization of scotopic algorithms.Comment: 23 pages, 6 figure
    • …
    corecore