41,146 research outputs found

    Information Percolation with Equilibrium Search Dynamics

    Get PDF
    We solve for the equilibrium dynamics of information sharing in a large population. Each agent is endowed with signals regarding the likely outcome of a random variable of common concern. Individuals choose the effort with which they search for others from whom they can gather additional information. When two agents meet, they share their information. The information gathered is further shared at subsequent meetings, and so on. Equilibria exist in which agents search maximally until they acquire sufficient information precision, and then minimally. A tax whose proceeds are used to subsidize the costs of search improves information sharing and can in some cases increase welfare. On the other hand, endowing agents with public signals reduces information sharing and can in some cases decrease welfare

    Extensive-Form Perfect Equilibrium Computation in Two-Player Games

    Full text link
    We study the problem of computing an Extensive-Form Perfect Equilibrium (EFPE) in 2-player games. This equilibrium concept refines the Nash equilibrium requiring resilience w.r.t. a specific vanishing perturbation (representing mistakes of the players at each decision node). The scientific challenge is intrinsic to the EFPE definition: it requires a perturbation over the agent form, but the agent form is computationally inefficient, due to the presence of highly nonlinear constraints. We show that the sequence form can be exploited in a non-trivial way and that, for general-sum games, finding an EFPE is equivalent to solving a suitably perturbed linear complementarity problem. We prove that Lemke's algorithm can be applied, showing that computing an EFPE is PPAD\textsf{PPAD}-complete. In the notable case of zero-sum games, the problem is in FP\textsf{FP} and can be solved by linear programming. Our algorithms also allow one to find a Nash equilibrium when players cannot perfectly control their moves, being subject to a given execution uncertainty, as is the case in most realistic physical settings.Comment: To appear in AAAI 1

    Knowledge data discovery and data mining in a design environment

    Get PDF
    Designers, in the process of satisfying design requirements, generally encounter difficulties in, firstly, understanding the problem and secondly, finding a solution [Cross 1998]. Often the process of understanding the problem and developing a feasible solution are developed simultaneously by proposing a solution to gauge the extent to which the solution satisfies the specific requirements. Support for future design activities has long been recognised to exist in the form of past design cases, however the varying degrees of similarity and dissimilarity found between previous and current design requirements and solutions has restrained the effectiveness of utilising past design solutions. The knowledge embedded within past designs provides a source of experience with the potential to be utilised in future developments provided that the ability to structure and manipulate that knowledgecan be made a reality. The importance of providing the ability to manipulate past design knowledge, allows the ranging viewpoints experienced by a designer, during a design process, to be reflected and supported. Data Mining systems are gaining acceptance in several domains but to date remain largely unrecognised in terms of the potential to support design activities. It is the focus of this paper to introduce the functionality possessed within the realm of Data Mining tools, and to evaluate the level of support that may be achieved in manipulating and utilising experiential knowledge to satisfy designers' ranging perspectives throughout a product's development
    • …
    corecore