7,092 research outputs found

    Stochastic Analysis of a Churn-Tolerant Structured Peer-to-Peer Scheme

    Full text link
    We present and analyze a simple and general scheme to build a churn (fault)-tolerant structured Peer-to-Peer (P2P) network. Our scheme shows how to "convert" a static network into a dynamic distributed hash table(DHT)-based P2P network such that all the good properties of the static network are guaranteed with high probability (w.h.p). Applying our scheme to a cube-connected cycles network, for example, yields a O(log⁥N)O(\log N) degree connected network, in which every search succeeds in O(log⁥N)O(\log N) hops w.h.p., using O(log⁥N)O(\log N) messages, where NN is the expected stable network size. Our scheme has an constant storage overhead (the number of nodes responsible for servicing a data item) and an O(log⁥N)O(\log N) overhead (messages and time) per insertion and essentially no overhead for deletions. All these bounds are essentially optimal. While DHT schemes with similar guarantees are already known in the literature, this work is new in the following aspects: (1) It presents a rigorous mathematical analysis of the scheme under a general stochastic model of churn and shows the above guarantees; (2) The theoretical analysis is complemented by a simulation-based analysis that validates the asymptotic bounds even in moderately sized networks and also studies performance under changing stable network size; (3) The presented scheme seems especially suitable for maintaining dynamic structures under churn efficiently. In particular, we show that a spanning tree of low diameter can be efficiently maintained in constant time and logarithmic number of messages per insertion or deletion w.h.p. Keywords: P2P Network, DHT Scheme, Churn, Dynamic Spanning Tree, Stochastic Analysis

    The essence of P2P: A reference architecture for overlay networks

    Get PDF
    The success of the P2P idea has created a huge diversity of approaches, among which overlay networks, for example, Gnutella, Kazaa, Chord, Pastry, Tapestry, P-Grid, or DKS, have received specific attention from both developers and researchers. A wide variety of algorithms, data structures, and architectures have been proposed. The terminologies and abstractions used, however, have become quite inconsistent since the P2P paradigm has attracted people from many different communities, e.g., networking, databases, distributed systems, graph theory, complexity theory, biology, etc. In this paper we propose a reference model for overlay networks which is capable of modeling different approaches in this domain in a generic manner. It is intended to allow researchers and users to assess the properties of concrete systems, to establish a common vocabulary for scientific discussion, to facilitate the qualitative comparison of the systems, and to serve as the basis for defining a standardized API to make overlay networks interoperable

    Diffusive capture processes for information search

    Get PDF
    We show how effectively the diffusive capture processes (DCP) on complex networks can be applied to information search in the networks. Numerical simulations show that our method generates only 2% of traffic compared with the most popular flooding-based query-packet-forwarding (FB) algorithm. We find that the average searching time, , of the our model is more scalable than another well known $n$-random walker model and comparable to the FB algorithm both on real Gnutella network and scale-free networks with $\gamma =2.4$. We also discuss the possible relationship between and , the second moment of the degree distribution of the networks
    • 

    corecore