123 research outputs found

    Context Aware Handover Algorithms For Mobile Positioning Systems

    Get PDF
    This work proposes context aware handover algorithms for mobile positioning systems. The algorithms perform handover among positioning systems based on important contextual factors related to position determination with efficient use of battery. The proposed solution is implemented in the form of an Android application named Locate@nav6. The performance of the proposed solution was tested in selected experimental areas. The handover performance was compared with other existing location applications. The proposed solution performed correct handover among positioning systems in 95 percent of cases studied while two other applications performed correct handover in only 50 percent of cases studied. Battery usage of the proposed solution is less than one third of the battery usage of two other applications. The analysis of the positioning error of the applications demonstrated that, the proposed solution is able to reduce positioning error indirectly by handing over the task of positioning to an appropriate positioning system. This kept the average error of positioning below 42.1 meters for Locate@nav6 while the average error for two other applications namely Google Latitude and Malaysia maps was between 92.7 and 171.13 meters

    Context Aware Handover Algorithms for Mobile Positioning Systems

    Get PDF
    Abstract: This work proposes context aware handover algorithms for mobile positioning systems. The algorithms perform handover among positioning systems based on important contextual factors related to position determination with efficient use of battery. The proposed solution which consists of the algorithms is implemented in the form of an Android application named Locate@nav6. The performance of the proposed solution was tested in selected experimental areas. The handover performance was compared with other existing location applications. The proposed solution performed correct handover among positioning systems in 95% of cases studied while two other applications performed correct handover in only 50% of cases studied. Battery usage of the proposed solution is less than one third of the battery usage of two other applications. The analysis of the positioning error of the applications demonstrated that, the proposed solution is able to reduce positioning error indirectly by handing over the task of positioning to an appropriate positioning system. This kept the average error of positioning below 42.1 meters for Locate@nav6 while the average error for two other applications namely Google Latitude and Malaysia maps was between 92.7 and 171.13 meters

    Seamless Outdoors-Indoors Localization Solutions on Smartphones: Implementation and Challenges

    Full text link
    © ACM, 2016. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in http://doi.org/10.1145/2871166[EN] The demand for more sophisticated Location-Based Services (LBS) in terms of applications variety and accuracy is tripling every year since the emergence of the smartphone a few years ago. Equally, smartphone manufacturers are mounting several wireless communication and localization technologies, inertial sensors as well as powerful processing capability, to cater to such LBS applications. A hybrid of wireless technologies is needed to provide seamless localization solutions and to improve accuracy, to reduce time to fix, and to reduce power consumption. The review of localization techniques/technologies of this emerging field is therefore important. This article reviews the recent research-oriented and commercial localization solutions on smartphones. The focus of this article is on the implementation challenges associated with utilizing these positioning solutions on Android-based smartphones. Furthermore, the taxonomy of smartphone-location techniques is highlighted with a special focus on the detail of each technique and its hybridization. The article compares the indoor localization techniques based on accuracy, utilized wireless technology, overhead, and localization technique used. The pursuit of achieving ubiquitous localization outdoors and indoors for critical LBS applications such as security and safety shall dominate future research efforts.This research was sponsored by Koya University, Kurdistan Region-Iraq. The authors also would like to thank Dr. Ali Al-Sherbaz (from the University of Northampton-UK) and Dr. Naseer Al-Jawad (from the University of Buckingham-UK) for providing and improving the quality of this article in terms of academic and technical writing.Maghdid, HS.; Lami, IA.; Ghafoor, KZ.; Lloret, J. (2016). Seamless Outdoors-Indoors Localization Solutions on Smartphones: Implementation and Challenges. ACM Computing Surveys. 48(4):1-34. https://doi.org/10.1145/2871166S134484I. Adusei, K. Kyamakya, and K. Jobmann. 2002. Mobile positioning technologies in cellular networks: An evaluation of their performance metrics. Proceedings of MILCOM 2002. 2, 1239--1244.Faiz Anuar and Ulrike Gretzel. 2011. Privacy concerns in the context of location-based services for tourism. In ENTER 2011 Conference, Innsbruck, Austria.A. Bensky. 2008. Wireless Positioning Technologies and Applications. Artech House, Inc. Norwood, MA.Azzedine Boukerche, Horacio A. B. F. Oliveira, Eduardo F. Nakamura, and Antonio A. F. Loureiro. 2007. Localization systems for wireless sensor networks. IEEE Wireless Communications 14, 6, 6--12.Azzedine Boukerche, Horacio A. B. F. Oliveira, Eduardo F. Nakamura, and Antonio A. F. Loureiro. 2008. Secure localization algorithms for wireless sensor networks. IEEE Communications Magazine 46, 4, 96--101.Azzedine Boukerche, Horacio A. B. F. Oliveira, Eduardo F. Nakamura, and Antonio A. F. Loureiro. 2008. Vehicular ad hoc networks: A new challenge for localization-based systems. Computer Communications 31, 12, 2838--2849.M. Butler. 2011. Android: Changing the Mobile Landscape. PERVASIVE Computing 10, 1, 4--7.J. Caffery and G. Stuber. 1998. Overview of radiolocation in CDMA cellular systems. IEEE Communications Magazine 36, 4, 38--45.Suma S. Cherian and Ashok N. Rudrapatna. 2013. LTE location technologies and delivery solutions. Bell Labs Technical Journal 18, 2, 175--194.M. Ciurana, D. Lopez, and F. Barcelo-Arroyo. 2009. SofTOA: Software ranging for TOA-based positioning of WLAN terminals. Location and Context Awareness 207--221.Paul Craven, Ronald Wong, Neal Fedora, and Paul Crampton. 2013. Studying the Effects of Interference on GNSS Signals. International Technical Meeting. San Diego, California: The Institute of Navigation, 893--186.D. Dardari, P. Closas, and P. M. Djuric. 2015. Indoor tracking: Theory, methods, and technologies. IEEE Transactions on Vehicular Technology 64, 4, 1263--1278.Guido De Angelis, Giuseppe Baruffa, and Saverio Cacopardi. 2012. GNSS/Cellular hybrid positioning system for mobile users in urban scenarios. IEEE Transactions on Intelligent Transportation Systems 14, 1, 313--321.Horacio Antonio Braga Fernandes De Oliveira, Azzedine Boukerche, Eduardo Freire Nakamura, and Antonio Alfredo Ferreira Loureiro. 2009. An efficient directed localization recursion protocol for wireless sensor networks. IEEE Transactions on Computers 58, 5, 677--691.Francescantonio Della Rosa, Mauro Pelosi, and Jari Nurmi. 2012. Human-induced effects on RSS ranging measurements for cooperative positioning. International Journal of Navigation and Observation 13.Zhongliang Deng, Yanpei Yu, Xie Yuan, Neng Wan, and Lei Yang. 2013. Situation and development tendency of indoor positioning. China Communications 10, 3, 42--55.Mohammed Elbes, Ala Al-Fuqaha, and Muhammad Anan. 2013. A precise indoor localization approach based on particle filter and dynamic exclusion techniques. Network Protocols and Algorithms 5, 2, 50--71.R. Faragher and R. Harle. 2013. SmartSLAM--an efficient smartphone indoor positioning system exploiting machine learning and opportunistic sensing. In ION GNSS.Zahid Farid, Rosdiadee Nordin, and Mahamod Ismail. 2013. Recent advances in wireless indoor localization techniques and system. Journal of Computer Networks and Communications 12.S. A. Fayaz. 2013. Location service for wireless network using improved RSS-based cellular localisation. International Journal of Electronics 1--16.C. Feng, W. Au, S. Valaee, and Z. Tan. 2010. Compressive sensing based positioning using RSS of WLAN access points. In 2010 Proceedings of IEEE INFOCOM, 1--9.Ruijun Fu, Yunxing Ye, and K. Pahlavan. 2012. Heterogeneous cooperative localization for social networks with mobile devices. In IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC’12).T. Gallagher, B. Li, A. Kealy, and A. Dempster. 2009. Trials of commercial Wi-Fi positioning systems for indoor and urban canyons. In IGNSS 2009 Symposium on GPS/GNSS.T. Gallagher, E. Wise, B. Li, A. Dempster, C. Rizos, and E. Ramsey-Stewart. 2012. Indoor positioning system based on sensor fusion for the blind and visually impaired. In 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN’12), 1--9.Miguel Garcia, Diana Bri, Jesus Tomas, and Jaime Lloret. 2013. A cooperative decision making algorithm for wireless location systems using interlinking data. In 10th International Conference on Cooperative Design, Visualization and Engineering (CDVE’13). Mallorca, Spain.Miguel Garcia, Fernando Boronat, Jesus Tomás, and Jaime Lloret. 2009. The development of two systems for indoor wireless sensors self-location. Ad Hoc & Sensor Wireless Networks 8, 3--4, 235--258.A. Günther and C. Hoene. 2005. Measuring round trip times to determine the distance between wlan nodes. In Proceedings of Networking 2005. Springer, 768--779.R. Hansen, R. Wind, C. Jensen, and B. Thomsen. 2009. Seamless indoor/outdoor positioning handover for location-based services in streamspin. In 10th International Conference on Mobile Data Management: Systems, Services and Middleware (MDM’09), 267--272.R. Harle. 2013. A survey of indoor inertial positioning systems for pedestrians. In IEEE Communications Surveys Tutorials 15, 3, 1281--1293.A. Hassan and S. Khairulmizam. 2009. Integration of global positioning system and inertial navigation system with different sampling rate using adaptive neuro fuzzy inference system. Science Journal 7, 98--106.J. Hightower and G. Borriello. 2001. Location systems for ubiquitous computing. Computer 34, 8, 57--66.C. Hoene and J. Willmann. 2008. Four-way TOA and software-based trilateration of IEEE 802.11 devices. In IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’08), 1--6.J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and A. Aggarwal. 2011. Efficient, generalized indoor WiFi GRAPHSLAM. In 2011 IEEE International Conference on Robotics and Automation (ICRA’11), 1038--1043.L. Hui, Y. Lei, and W. Yuanfei. 2010. UWB, Multi-sensors and WiFi-mesh based precision positioning for urban rail traffic. In Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS’10), 1--8.Ihsan Alshahib Lami, S. Halgurd Maghdid, and Torben Kuseler. 2014. SILS: A smart indoors localization scheme based on on-the-go cooperative smartphones networks using onboard bluetooth, WiFi and GNSS. In Proceedings of the 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+’14). Tampa, FL.T. Iwase and R. Shibasaki. 2013. Infra-free indoor positioning using only smartphone sensors. In 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN’13).S. Jin. 2012. Global Navigation Satellite Systems: Signal, Theory and Applications. In Tech. 438 pages.K. Kalliola. 2008. Bringing navigation indoors. The Way We Live Next. Nokia.J. Kim, J. Lee, and C. Park. 2008. A mitigation of line-of-sight by TDOA error modeling in wireless communication system. In International Conference on Control, Automation and Systems (ICCAS’08), 1601--1605.S. Koenig, M. Schmidt, and C. Hoene. 2011. Multipath mitigation for indoor localization based on IEEE 802.11 time-of-flight measurements. In 2011 IEEE International Symposium on World of Wireless, Mobile and Multimedia Networks (WoWMoM’11), 1--8.N. Kohtake, S. Morimoto, S. Kogure, and D. Manandhar. 2011. Indoor and outdoor seamless positioning using indoor messaging system and GPS. In International Conference on Indoor Positioning and Indoor Navigation (IPIN’11).A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott, et al. 2005. Place lab: Device positioning using radio beacons in the wild. Pervasive Computing 301--306.J. Lee, Z. Lin, P. Chin, and K. Yar. 2010. One way ranging time drift compensation for both synchronized and non-synchronized clocks. In 2010 International Conference on System Science and Engineering (ICSSE’10), 327--331.Jae-Eun Lee and Sanguk Lee. 2010. Indoor initial positioning using single clock pseudolite system. In 2010 International Conference on Information and Communication Technology Convergence (ICTC’10), 575--578.B. Li, A. G. Dempster, and C. Rizos. 2010. Positioning in environments where GPS fails. FIG Congress, Sydney, Australia, 1--18.D. Lim, S. Lee, and D. Cho. 2007. Design of an assisted GPS receiver and its performance analysis. In IEEE International Symposium on Circuits and Systems (ISCAS’0), 1742--1745.H. Liu, H. Darabi, P. Banerjee, and J. Liu. 2007. Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37, 6, 1067--1080.Kaikai Liu, Qiuyuan Huang, Wang Jiecong, Li Xiaolin, and D. O. Wu. 2013. Improving GPS service via social collaboration. In 2013 IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS’13).X. Liu, S. Zhang, J. Quan, and X. Lin. 2010. The experimental analysis of outdoor positioning system based on fingerprint approach. In 2010 12th IEEE International Conference on Communication Technology (ICCT’13), 369--372.Jaime Lloret, Jesus Tomas, Alejandro Canovas, and Irene Bellver. 2011. A geopositioning system based on WiFi networks. In The 7th International Conference on Networking and Services (ICNS’11). Venice, Italy.Jaime Lloret, Jesus Tomás, Miguel Garcia, and Alejandro Cánovas. 2009. A hybrid stochastic approach for self-location of wireless sensors in indoor environments. Sensors 9, 5, 3695--3712.Diego Lopez-de-Ipina, Bernhard Klein, Christian Guggenmos, Jorge Perez, and Guillermo Gil. 2011. User-Aware semantic location models for service provision. International Symposium on Ubiquitous Computing and Ambient Intelligence, Riviera Maya, Mexico.Dimitrios Lymberopoulos, Jie Liu, Xue Yang, Romit Roy Choudhury, Vlado Handziski, and Souvik Sen. 2015. A realistic evaluation and comparison of indoor location technologies: Experiences and lessons learned. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks. ACM, New York, NY.N. Mahiddin, N. Safie, E. Nadia, S. Safei, and E. Fadzli. 2012. Indoor position detection using WiFi and trilateration technique. The International Conference on Informatics and Applications (ICIA’12), 362--366.T. Manodham, L. Loyola, and T. Miki. 2008. A novel wireless positioning system for seamless internet connectivity based on the WLAN infrastructure. Wireless Personal Communications 44, 3, 295--309.Alex Mariakakis, Souvik Sen, Jeongkeun Lee, and Kyu-Han Kim. 2014. Single access point based indoor localization. In Proceedings of ACM MobiSys.R. Mautz. 2009. The challenges of indoor environments and specification on some alternative positioning systems. In 6th Workshop on Positioning, Navigation and Communication (WPNC’09), 29--36.M. Mock, R. Frings, E. Nett, and S. Trikaliotis. 2000. Clock synchronization for wireless local area networks. 12th Euromicro Conference on Real-Time Systems (Euromicro RTS’00), 183--189.E. Mok. 2010. Using outdoor public WiFi and GPS integrated method for position updating of knowledge-based logistics system in dense high rise urban environments. 8th International Conference on Supply Chain Management and Information Systems (SCMIS’10), 1--4.D. Niculescu and B. Nath. 2004. VOR base stations for indoor 802. 11 positioning. In Proceedings of the 10th Annual International Conference on Mobile Computing and Networking 26, 58--69.T. Oshin, S. Poslad, and A. Ma. 2012. Improving the energy-efficiency of GPS based location sensing smartphone applications. In IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom’12), 1698--1705.R. Padilla. 2013. Apple retail stores to integrate iBeacon systems to assist with sales and services. Retrieved January 19, 2016 from http://www.macrumors.com/2013/11/16/apple-retail-stores-to-integrate-ibeacon-systems-to-assist-with-sales-and-services/.D. Park and J. Park. 2011. An enhanced ranging scheme using WiFi RSSI measurements for ubiquitous location. In 1st ACIS/JNU International Conference on Computers, Networks, Systems and Industrial Engineering (CNSI’11), 296--301.J. Partyka. 2012. A look at small indoor location competitors. GPS world. Available at: http://gpsworld.com/wirelesslook-small-indoor-location-competitors-13229/ {Last access January 31, 2016}.L. Pei, R. Chen, J. Liu, Z. Liu, H. Kuusniemi, Y. Chen, et al. 2011. Sensor assisted 3D personal navigation on a smart phone in GPS degraded environments. In 19th International Conference on Geoinformatics, 1--6.R. G. Priyanka Shah. 2012, May 01. Location based reminder using GPS for mobile (Android). ARPN Journal of Science and Technology 2, 4, 377--380.C. Rizos, G. Roberts, J. Barnes, and N. Gambale. 2010. Locata: A new high accuracy indoor positioning system. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15--17.R. Rowe, P. Duffett-Smith, M. Jarvis, and N. Graube. 2008. Enhanced GPS: The tight integration of received cellular timing signals and GNSS receivers for ubiquitous positioning. In IEEE/ION Position, Location and Navigation Symposium, 838--845.A. Roxin, J. Gaber, M. Wack, and A. Nait-Sidi-Moh. 2007. Survey of wireless geolocation techniques. In IEEE Globecom Workshops, 1--9.J. Ryoo, H. Kim, and S. Das. 2012. Geo-fencing: Geographical-fencing based energy-aware proactive framework for mobile devices. In IEEE 20th International Workshop on Quality of Service (IWQoS’12), 1--9.Souvik Sen, Jeongkeun Lee, Kyu-Han Kim, and Paul Congdon. 2013. Avoiding multipath to revive inbuilding WiFi localization. In Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services. ACM, New York, NY.Sensewhere LTD. 2011. Geo-fence technology and applications. Indoor Location Technology Leaders. Available at: http://www.sensewhere.com/images/geowhereDatasheet_compressed.pdf {Last access January 31, 2016}.I. Shafer and M. Chang L. 2010. Movement detection for power-efficient smartphone WLAN localization. In Proceedings of the 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, ACM, New York, NY, 81--90.Aaron Strout and Mike Schneider. 2011. Location Based Marketing For Dummies. John Wiley & Sons, Hoboken, NJ.Fazli Subhan, Halabi Hasbullah, Azat Rozyyev, and Sheikh Tahir Bakhsh. 2011. Indoor positioning in Bluetooth networks using fingerprinting and lateration approach. In 2011 International Conference on Information Science and Applications (ICISA).Daisuke Taniuchi, Xiaopeng Liu, Daisuke Nakai, and Takuya Maekawa. 2015. Spring model based collaborative indoor position estimation with neighbor mobile devices. IEEE Journal of Selected Topics in Signal Processing 9, 2, 268--277.CSRICIII Working Group 3. 2013. E9-1-1 Location Accuracy: Indoor Location Test Bed Report. San Jose CA: The Communications Security, Reliability and Interoperability Council III. https://transition.fcc.gov/bureaus/pshs/advisory/csric3/CSRIC_III_WG3_Report_March_%202013_ILTestBedReport.pdf {Last access January 31, 2016}.Agoston Torok, Akos Nagy, Laszlo Kovats, and Peter Pach. 2014. DREAR-towards infrastructure-free indoor localization via dead-reckoning enhanced with activity recognition. In 8th International Conference on. Next Generation Mobile Apps, Services and Technologies (NGMAST’14).D. McHoul. 2008. U-TDOA Enabling New Location-based Safety and Security Solutions. TruePosition-White Paper, USA, 1--10.A. Waadt, G. Bruck, and P. Jung. 2009. An overview of positioning systems and technologies. In 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL’09), 1--5.M. Weyn and F. Schrooyen. 2008. A Wi-Fi Assisted GPS Positioning Concept. ECUMICT, Ghent, Belgium.S. Wibowo, M. Klepal, and D. Pesch. 2009. Time of flight ranging using off-the-self IEEE802. 11 WiFi tags. In Proceedings of the International Conference on Positioning and Context-Awareness (PoCA’09).O. Woodman and R. Harle. 2008. Pedestrian localisation for indoor environments. In Proceedings of the 10th International Conference on Ubiquitous Computing, 114--123.Yinfeng Wu, Ligong Li, Yongji Ren, Kefu Yi, and Ning Yu. 2014. A RSSI localization algorithm and implementation for indoor wireless sensor networks. Adhoc & Sensor Wireless Networks 22, 2.Zhuoling Xiao, Hongkai Wen, Andrew Markham, and Niki Trigoni. 2015. Robust pedestrian dead reckoning (R-PDR) for arbitrary mobile device placement. In International Conference on Indoor Positioning and Indoor Navigation. IEEE.J. Xiong and K. Jamieson. 2011. ArrayTrack: A fine-grained indoor location system. RN 11, 19.Yi Sun, Yubin Zhao, and J. Schiller. 2014. An autonomic indoor positioning application based on smartphone. In IEEE Wireless Communications and Networking Conference (WCNC’14).M. Youssef, A. Youssef, C. Rieger, U. Shankar, and A. Agrawala. 2006. Pinpoint: An asynchronous time-based location determination system. In Proceedings of the 4th International Conference on Mobile Systems, Applications and Services,165--176.Haejung Yun, Dongho Han, and C. Choong Lee. 2013. Understanding the use of location-based service applications: Do privacy concerns matter? Journal of Electronic Commerce Research 14, 3, 215.P. Zandbergen. 2009. Accuracy of iPhone locations: A comparison of assisted GPS, WiFi and cellular positioning. Transactions in GIS 13, s1, 5--25.Y. Zhao, M. Li, and F. Shi. 2010. Indoor radio propagation model based on dominant path. International Journal of Communications, Network and System Sciences 3, 3, 330--337.S. Zirari, P. Canalda, and F. Spies. 2010. WiFi GPS based combined positioning algorithm. In IEEE International Conference on Wireless Communications, Networking and Information Security (WCNIS’10), 684--688

    Context Aware Handover Algorithms for Mobile Positioning Systems

    Get PDF
    Abstract: This work proposes context aware handover algorithms for mobile positioning systems. The algorithms perform handover among positioning systems based on important contextual factors related to position determination with efficient use of battery. The proposed solution which consists of the algorithms is implemented in the form of an Android application named Locate@nav6. The performance of the proposed solution was tested in selected experimental areas. The handover performance was compared with other existing location applications. The proposed solution performed correct handover among positioning systems in 95% of cases studied while two other applications performed correct handover in only 50% of cases studied. Battery usage of the proposed solution is less than one third of the battery usage of two other applications. The analysis of the positioning error of the applications demonstrated that, the proposed solution is able to reduce positioning error indirectly by handing over the task of positioning to an appropriate positioning system. This kept the average error of positioning below 42.1 meters for Locate@nav6 while the average error for two other applications namely Google Latitude and Malaysia maps was between 92.7 and 171.13 meters

    Impact of Positioning Technology on Human Navigation

    Get PDF
    In navigation from one place to another, spatial knowledge helps us establish a destination and route while travelling. Therefore, sufficient spatial knowledge is a vital element in successful navigation. To build adequate spatial knowledge, various forms of spatial tools have been introduced to deliver spatial information without direct experience (maps, descriptions, pictures, etc.). An innovation developed in the 1970s and available on many handheld platforms from the early 2000s is the Global Position System (GPS) and related map and text-based navigation support systems. Contemporary technical achievements, such as GPS, have made navigation more effective, efficient, and comfortable in most outdoor environments. Because GPS delivers such accurate information, human navigation can be supported without specific spatial knowledge. Unfortunately, there is no universal and accurate navigation system for indoor environments. Since smartphones have become increasingly popular, we can more frequently and easily access various positioning services that appear to work both indoors and outdoors. The expansion of positioning services and related navigation technology have changed the nature of navigation. For example, routes to destination are progressively determined by a “system,” not the individual. Unfortunately we only have a partial and nascent notion of how such an intervention affects spatial behaviour. The practical purpose of this research is to develop a trustworthy positioning system that functions in indoor environments and identify those aspects those should be considered before deploying Indoor Positioning System (IPS), all towards the goal of maintaining affordable positioning accuracy, quality, and consistency. In the same way that GPS provides worry free directions and navigation support, an IPS would extend such opportunities to many of our built environments. Unfortunately, just as we know little about how GPS, or any real time navigation system, affects human navigation, there is little evidence suggesting how such a system (indoors or outdoors) changes how we find our way. For this reason, in addition to specifying an indoor position system, this research examines the difference in human’s spatial behaviour based on the availability of a navigation system and evaluates the impact of varying the levels of availability of such tools (not available, partially available, or full availability). This research relies on outdoor GPS, but when such systems are available indoors and meet the accuracy and reliability or GPS, the results will be generalizable to such situations

    Autoencoder extreme learning machine for fingerprint-based positioning: A good weight initialization is decisive

    Get PDF
    Indoor positioning based on machine-learning (ML) models has attracted widespread interest in the last few years, given its high performance and usability. Supervised, semisupervised, and unsupervised models have thus been widely used in this field, not only to estimate the user position, but also to compress, clean, and denoise fingerprinting datasets. Some scholars have focused on developing, improving, and optimizing ML models to provide accurate solutions to the end user. This article introduces a novel method to initialize the input weights in autoencoder extreme learning machine (AE-ELM), namely factorized input data (FID), which is based on the normalized form of the orthogonal component of the input data. AE-ELM with FID weight initialization is used to efficiently reduce the radio map. Once the dimensionality of the dataset is reduced, we use k -nearest neighbors to perform the position estimation. This research work includes a comparative analysis with several traditional ways to initialize the input weights in AE-ELM, showing that FID provide a significantly better reconstruction error. Finally, we perform an assessment with 13 indoor positioning datasets collected from different buildings and in different countries. We show that the dimensionality of the datasets can be reduced more than 11 times on average, while the positioning error suffers only a small increment of 15% (on average) in comparison to the baseline

    Hybridisation of GNSS with other wireless/sensors technologies onboard smartphones to offer seamless outdoors-indoors positioning for LBS applications

    Get PDF
    Location-based services (LBS) are becoming an important feature on today’s smartphones (SPs) and tablets. Likewise, SPs include many wireless/sensors technologies such as: global navigation satellite system (GNSS), cellular, wireless fidelity (WiFi), Bluetooth (BT) and inertial-sensors that increased the breadth and complexity of such services. One of the main demand of LBS users is always/seamless positioning service. However, no single onboard SPs technology can seamlessly provide location information from outdoors into indoors. In addition, the required location accuracy can be varied to support multiple LBS applications. This is mainly due to each of these onboard wireless/sensors technologies has its own capabilities and limitations. For example, when outdoors GNSS receivers on SPs can locate the user to within few meters and supply accurate time to within few nanoseconds (e.g. ± 6 nanoseconds). However, when SPs enter into indoors this capability would be lost. In another vain, the other onboard wireless/sensors technologies can show better SP positioning accuracy, but based on some pre-defined knowledge and pre-installed infrastructure. Therefore, to overcome such limitations, hybrid measurements of these wireless/sensors technologies into a positioning system can be a possible solution to offer seamless localisation service and to improve location accuracy. This thesis aims to investigate/design/implement solutions that shall offer seamless/accurate SPs positioning and at lower cost than the current solutions. This thesis proposes three novel SPs localisation schemes including WAPs synchronisation/localisation scheme, SILS and UNILS. The schemes are based on hybridising GNSS with WiFi, BT and inertial-sensors measurements using combined localisation techniques including time-of-arrival (TOA) and dead-reckoning (DR). The first scheme is to synchronise and to define location of WAPs via outdoors-SPs’ fixed location/time information to help indoors localisation. SILS is to help locate any SP seamlessly as it goes from outdoors to indoors using measurements of GNSS, synched/located WAPs and BT-connectivity signals between groups of cooperated SPs in the vicinity. UNILS is to integrate onboard inertial-sensors’ readings into the SILS to provide seamless SPs positioning even in deep indoors, i.e. when the signals of WAPs or BT-anchors are considered not able to be used. Results, obtained from the OPNET simulations for various SPs network size and indoors/outdoors combinations scenarios, show that the schemes can provide seamless and locate indoors-SPs under 1 meter in near-indoors, 2-meters can be achieved when locating SPs at indoors (using SILS), while accuracy of around 3-meters can be achieved when locating SPs at various deep indoors situations without any constraint (using UNILS). The end of this thesis identifies possible future work to implement the proposed schemes on SPs and to achieve more accurate indoors SPs’ location

    Context Awareness for Navigation Applications

    Get PDF
    This thesis examines the topic of context awareness for navigation applications and asks the question, “What are the benefits and constraints of introducing context awareness in navigation?” Context awareness can be defined as a computer’s ability to understand the situation or context in which it is operating. In particular, we are interested in how context awareness can be used to understand the navigation needs of people using mobile computers, such as smartphones, but context awareness can also benefit other types of navigation users, such as maritime navigators. There are countless other potential applications of context awareness, but this thesis focuses on applications related to navigation. For example, if a smartphone-based navigation system can understand when a user is walking, driving a car, or riding a train, then it can adapt its navigation algorithms to improve positioning performance. We argue that the primary set of tools available for generating context awareness is machine learning. Machine learning is, in fact, a collection of many different algorithms and techniques for developing “computer systems that automatically improve their performance through experience” [1]. This thesis examines systematically the ability of existing algorithms from machine learning to endow computing systems with context awareness. Specifically, we apply machine learning techniques to tackle three different tasks related to context awareness and having applications in the field of navigation: (1) to recognize the activity of a smartphone user in an indoor office environment, (2) to recognize the mode of motion that a smartphone user is undergoing outdoors, and (3) to determine the optimal path of a ship traveling through ice-covered waters. The diversity of these tasks was chosen intentionally to demonstrate the breadth of problems encompassed by the topic of context awareness. During the course of studying context awareness, we adopted two conceptual “frameworks,” which we find useful for the purpose of solidifying the abstract concepts of context and context awareness. The first such framework is based strongly on the writings of a rhetorician from Hellenistic Greece, Hermagoras of Temnos, who defined seven elements of “circumstance”. We adopt these seven elements to describe contextual information. The second framework, which we dub the “context pyramid” describes the processing of raw sensor data into contextual information in terms of six different levels. At the top of the pyramid is “rich context”, where the information is expressed in prose, and the goal for the computer is to mimic the way that a human would describe a situation. We are still a long way off from computers being able to match a human’s ability to understand and describe context, but this thesis improves the state-of-the-art in context awareness for navigation applications. For some particular tasks, machine learning has succeeded in outperforming humans, and in the future there are likely to be tasks in navigation where computers outperform humans. One example might be the route optimization task described above. This is an example of a task where many different types of information must be fused in non-obvious ways, and it may be that computer algorithms can find better routes through ice-covered waters than even well-trained human navigators. This thesis provides only preliminary evidence of this possibility, and future work is needed to further develop the techniques outlined here. The same can be said of the other two navigation-related tasks examined in this thesis
    corecore