12,315 research outputs found

    Mobile Device Interaction in Ubiquitous Computing

    Get PDF

    Prop-Based Haptic Interaction with Co-location and Immersion: an Automotive Application

    Get PDF
    Most research on 3D user interfaces aims at providing only a single sensory modality. One challenge is to integrate several sensory modalities into a seamless system while preserving each modality's immersion and performance factors. This paper concerns manipulation tasks and proposes a visuo-haptic system integrating immersive visualization, tactile force and tactile feedback with co-location. An industrial application is presented

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Supporting Device Discovery and Spontaneous Interaction with Spatial References

    Get PDF
    The RELATE interaction model is designed to support spontaneous interaction of mobile users with devices and services in their environment. The model is based on spatial references that capture the spatial relationship of a user’s device with other co-located devices. Spatial references are obtained by relative position sensing and integrated in the mobile user interface to spatially visualize the arrangement of discovered devices, and to provide direct access for interaction across devices. In this paper we discuss two prototype systems demonstrating the utility of the model in collaborative and mobile settings, and present a study on usability of spatial list and map representations for device selection

    Mobile graphics: SIGGRAPH Asia 2017 course

    Get PDF
    Peer ReviewedPostprint (published version

    Light on horizontal interactive surfaces: Input space for tabletop computing

    Get PDF
    In the last 25 years we have witnessed the rise and growth of interactive tabletop research, both in academic and in industrial settings. The rising demand for the digital support of human activities motivated the need to bring computational power to table surfaces. In this article, we review the state of the art of tabletop computing, highlighting core aspects that frame the input space of interactive tabletops: (a) developments in hardware technologies that have caused the proliferation of interactive horizontal surfaces and (b) issues related to new classes of interaction modalities (multitouch, tangible, and touchless). A classification is presented that aims to give a detailed view of the current development of this research area and define opportunities and challenges for novel touch- and gesture-based interactions between the human and the surrounding computational environment. © 2014 ACM.This work has been funded by Integra (Amper Sistemas and CDTI, Spanish Ministry of Science and Innovation) and TIPEx (TIN2010-19859-C03-01) projects and Programa de Becas y Ayudas para la Realización de Estudios Oficiales de Máster y Doctorado en la Universidad Carlos III de Madrid, 2010

    A connectivist approach to smart city learning : Valletta city case-study

    Get PDF
    A connectivist approach will be adopted to design and evaluate learning in technology-enhanced open spaces in Valletta city. Learning is considered as a process of creating connections between learner’s inner cognitive and affective systems with the external physical and social worlds. These interactions are organised within a model comprising dimensions and levels of interactions. The experience for a learner in a technology-enhanced historical place will be designed considering interactions with the content domain (history, botany, art), the technological dimension (interaction between handheld devices and the available signals such as 3/4G, Wifi or GNSS) and the social dimension comprising interactions with fellow learners /citizens and domain experts. The levels of interactions are related to learner’s experience within the subject domain, with technology and one’s status or role in learning community or community of practice. Thus learning experiences have to be designed considering acquisition level for novice learners, participatory learning for more experience learners and contributory learning for highly competent learners. This connectivist model will be applied to identified places of historical or educational interest in Valletta city to design different modes of learning mediated through interactive technologies. The concept of Personal Learning Environments in Smart cities [1] will be used to provide technology-enhanced experiences in Playful learning, Seamless learning, Geo-learning, Citizen enquiry and Crowd learning. A number of these technology-enhanced learning experiences, developed in collaboration with CYBERPARKS ACTION’s WG1, will be contextualized in Valletta city. University of Malta will provide the domain content and resources, together with the pedagogical strategy for each learning experience. Researchers from WG1 will design and develop the technological model and infrastructure, mainly the Android-based Way-Cyberparks App that will integrate GNSS-based learning, Augmented Reality, Navigation tracing and other functionalities used for specific tasks and type of data collection. An interactions-based methodology will be used to evaluate learning along the identified dimensions.Funded by the Horizon 2020 Framework Programme of the European Union.peer-reviewe

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research
    corecore