384 research outputs found

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Cooperative Energy-efficient Management of Federated WiFi Networks

    Get PDF
    The proliferation of overlapping, always-on IEEE 802.11 access points (APs) in urban areas, can cause inefficient bandwidth usage and energy waste. Cooperation among APs could address these problems by allowing underused devices to hand over their wireless stations to nearby APs and temporarily switch off, while avoiding to overload a BSS and thus offloading congested APs. The federated house model provides an appealing backdrop to implement cooperation among APs. In this paper, we outline a distributed framework that assumes the presence of a multipurpose gateway with AP capabilities in every household. Our framework allows cooperation through the monitoring of local wireless resources and the triggering of offloading requests toward other federated gateways. Our simulation results show that, in realistic residential settings, the proposed framework yields an energy saving between 45 and 86 percent under typical usage patterns, while avoiding congestion and meeting user expectations in terms of throughput. Furthermore, we show the feasibility and the benefits of our framework with a real test-bed deployed on commodity hardware

    "Performance Evaluation of Wi-Fi comparison with WiMAX Networks"

    Full text link
    Wireless networking has become an important area of research in academic and industry. The main objectives of this paper is to gain in-depth knowledge about the Wi-Fi- WiMAX technology and how it works and understand the problems about the WiFi- WiMAX technology in maintaining and deployment. The challenges in wireless networks include issues like security, seamless handover, location and emergency services, cooperation, and QoS.The performance of the WiMAX is better than the Wi-Fi and also it provide the good response in the access. It's evaluated the Quality of Service (Qos) in Wi-Fi compare with WiMAX and provides the various kinds of security Mechanisms. Authentication to verify the identity of the authorized communicating client stations. Confidentiality (Privacy) to secure that the wirelessly conveyed information will remain private and protected. Take necessary actions and configurations that are needed in order to deploy Wi-Fi -WiMAX with increased levels of security and privacyComment:

    SoftMAC in Heterogeneous Wireless Network

    Get PDF
    Wireless networks are growing exponentially by the steady improvement of its speed and quality. IEEE 802.11-based Wireless Local Area Networking (WLAN) has been developed for mobile computing devices in LANs, in a short and limited range. IEEE 802.16 Wireless Metropolitan Area Network (WMAN) is designed for a line-of-sight (LOS) distance with QoS capability. The IEEE 802.11 standard has a totally different MAC layer compared to the IEEE 802.16 standard, normally they will communicate at the Network Layer by switches or routers. This thesis investigates the major design requirements for SoftMAC design, and will demonstrate a prototype that can meet the design requirements. It proves the possibility and flexibility of using SoftMAC to connect and control Heterogeneous Wireless Network, in order to fulfill seamless handover among multiple heterogeneous wireless interfaces. We will show that by adding the proposed SoftMAC on top of the traditional MAC layer, the mobile station cannot only perform handover between access points, but also essentially open a door to a wider range of application and services

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201
    • 

    corecore