11,267 research outputs found

    P-class phasor measurement unit algorithms using adaptive filtering to enhance accuracy at off-nominal frequencies

    Get PDF
    While the present standard C.37.118-2005 for Phasor Measurement Units (PMUs) requires testing only at steady-state conditions, proposed new versions of the standard require much more stringent testing, involving frequency ramps and off-nominal frequency testing. This paper presents two new algorithms for “P Class” PMUs which enable performance at off-nominal frequencies to be retained at levels comparable to the performance for nominal frequency input. The performances of the algorithms are compared to the “Basic” Synchrophasor Estimation Model described in the new standard. The proposed algorithms show a much better performance than the “Basic” algorithm, particularly in the measurements of frequency and rate-of-change-of-frequency at off-nominal frequencies and in the presence of unbalance and harmonics

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    An Adaptive Design Methodology for Reduction of Product Development Risk

    Full text link
    Embedded systems interaction with environment inherently complicates understanding of requirements and their correct implementation. However, product uncertainty is highest during early stages of development. Design verification is an essential step in the development of any system, especially for Embedded System. This paper introduces a novel adaptive design methodology, which incorporates step-wise prototyping and verification. With each adaptive step product-realization level is enhanced while decreasing the level of product uncertainty, thereby reducing the overall costs. The back-bone of this frame-work is the development of Domain Specific Operational (DOP) Model and the associated Verification Instrumentation for Test and Evaluation, developed based on the DOP model. Together they generate functionally valid test-sequence for carrying out prototype evaluation. With the help of a case study 'Multimode Detection Subsystem' the application of this method is sketched. The design methodologies can be compared by defining and computing a generic performance criterion like Average design-cycle Risk. For the case study, by computing Average design-cycle Risk, it is shown that the adaptive method reduces the product development risk for a small increase in the total design cycle time.Comment: 21 pages, 9 figure

    High-speed civil transport flight- and propulsion-control technological issues

    Get PDF
    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team

    Reconstructing the calibrated strain signal in the Advanced LIGO detectors

    Get PDF
    Advanced LIGO's raw detector output needs to be calibrated to compute dimensionless strain h(t). Calibrated strain data is produced in the time domain using both a low-latency, online procedure and a high-latency, offline procedure. The low-latency h(t) data stream is produced in two stages, the first of which is performed on the same computers that operate the detector's feedback control system. This stage, referred to as the front-end calibration, uses infinite impulse response (IIR) filtering and performs all operations at a 16384 Hz digital sampling rate. Due to several limitations, this procedure currently introduces certain systematic errors in the calibrated strain data, motivating the second stage of the low-latency procedure, known as the low-latency gstlal calibration pipeline. The gstlal calibration pipeline uses finite impulse response (FIR) filtering to apply corrections to the output of the front-end calibration. It applies time-dependent correction factors to the sensing and actuation components of the calibrated strain to reduce systematic errors. The gstlal calibration pipeline is also used in high latency to recalibrate the data, which is necessary due mainly to online dropouts in the calibrated data and identified improvements to the calibration models or filters.Comment: 20 pages including appendices and bibliography. 11 Figures. 3 Table

    An implementation of packet-switched communication for pilot protection at Tennessee Valley Authority

    Get PDF
    The utility network has long relied on Time Division Multiplexing (TDM) such as T1 and Synchronous Optical Network (SONET) as the main channel to transmit and receive data in a communication system. However, TDM technology is aging and its equipment becoming obsolete as vendors transition to Packet-Switched Networks (PSN) to make way for Ethernet-based network communications. Teleprotection is a critical element for a reliable power system as it provides high-speed tripping for faults on the protected line and is applied in various pilot protection schemes. Protection schemes cannot perform at their best without a fast and reliable communication system. The transition from a circuit-switched technology like SONET to a packet-based technology like Multiprotocol Label Switching-Transport Profile (MPLS-TP) has caused reservations for protection engineers as they express their concerns for lacking guaranteed 100% availability and potential latency. This paper will address this issue and the consistent test results at the Tennessee Valley Authority (TVA)\u27s lab have proven to satisfy the communication requirements in a teleprotection system. Teleprotection traffics make to its destination in order in microseconds, the symmetrical delay is less than 1”s, and especially the recovery from a failure occurs under 50ms (3 cycles). The results reassure the protection engineers that the Ethernet migration is necessary yet provides a better performance compared to the legacy system
    • 

    corecore