7,474 research outputs found

    Sea state effect on the sea surface emissivity at L-band

    Get PDF
    In May 1999, the European Space Agency (ESA) selected the Earth Explorer Opportunity Soil Moisture and Ocean Salinity (SMOS) mission to obtain global and frequent soil moisture and ocean salinity maps. SMOS' single payload is the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), an L-band two-dimensional aperture synthesis radiometer with multiangular observation capabilities. At L-band, the brightness temperature sensitivity to the sea surface salinity (SSS) is low, approximately 0.5 K/psu at 20/spl deg/C, decreasing to 0.25 K/psu at 0/spl deg/C, comparable to that to the wind speed /spl sim/0.2 K/(m/s) at nadir. However, at a given time, the sea state does not depend only on local winds, but on the local wind history and the presence of waves traveling from far distances. The Wind and Salinity Experiment (WISE) 2000 and 2001 campaigns were sponsored by ESA to determine the impact of oceanographic and atmospheric variables on the L-band brightness temperature at vertical and horizontal polarizations. This paper presents the results of the analysis of three nonstationary sea state conditions: growing and decreasing sea, and the presence of swell. Measured sea surface spectra are compared with the theoretical ones, computed using the instantaneous wind speed. Differences can be minimized using an "effective wind speed" that makes the theoretical spectrum best match the measured one. The impact on the predicted brightness temperatures is then assessed using the small slope approximation/small perturbation method (SSA/SPM).Peer Reviewe

    A new empirical model of sea surface microwave emissivity for salinity remote sensing

    Get PDF
    SMOS (Soil Moisture and Ocean Salinity) is a European Space Agency mission that aims at generating global ocean salinity maps with an accuracy of 0.1 psu, at spatial and temporal resolution suitable for climatic studies. The satellite sensor is an L-band (1400-1427 MHz) aperture synthesis interferometric radiometer. Sea surface salinity (SSS) can be retrieved since the brightness temperature of sea water is dependent on the frequency, angle of observation, dielectric constant of sea water, sea surface temperature and sea surface state. This paper presents a new empirical sea water emissivity model at L-band in which surface roughness effects are parameterized in terms of wind speed and significant wave height. For the SMOS mission these parameters can be obtained from external measurements and model diagnostics. An analysis has been done on the effect on SSS retrieval of different sources for this auxiliary information. Copyright 2004 by the American Geophysical UnionThis study was funded by ESA-ESTEC under WISE (14188/00/NL/DC) and EuroSTARRS (15950/02/NL/SF) contracts, and by the Spanish National Program on Space Research under grant ESP2001-4523-PEPeer Reviewe

    Impact of rain, swell, and surface currents on the electromagnetic bias in GNSS-Reflectometry

    Get PDF
    The assessment of the electromagnetic (EM) bias is required to predict the performance of upcoming global navigation satellite systems-reflectometry (GNSS-R) altimetry systems, and its impact in data assimilation climate studies. In previous studies, the EM bias in bistatic GNSS-R altimetry (L-band) was numerically estimated for a wind-driven sea surface height spectrum, including the time-domain variability. In the present study, spectral models for the rain, swell, and surface currents are used to compute a perturbed wind-driven sea surface height spectrum, from which a perturbed three-dimensional (3-D) time-evolving wind-driven sea surface height is computed. The generated sea surface is then illuminated by a right hand circular polarization (RHCP) L-band EM wave, and the wave scattered from each facet is computed from each facet using the physical optics (PO) method under the Kirchhoff approximation (KA). Finally, the EM bias is computed numerically as the height of each patch times the forward-scattering coefficient, divided by the average of the forward-scattering coefficient. The impact of rain on the EM bias is a moderate decrease (in magnitude) due to the damping of the large gravity waves, which is more significant as the wind speed increases. The impact of swell is a small increase (in magnitude) mostly due to the change of the local incidence angles. The impact of currents can be either a moderate increase or decrease (in magnitude), depending on the sense of the current with respect to the wind, due to a change in the surface roughness.Peer ReviewedPostprint (author's final draft

    A Multispectral Look at Oil Pollution Detection, Monitoring, and Law Enforcement

    Get PDF
    The problems of detecting oil films on water, mapping the areal extent of slicks, measuring the slick thickness, and identifying oil types are discussed. The signature properties of oil in the ultraviolet, visible, infrared, microwave, and radar regions are analyzed

    Comparison of environmental conditions in the Bering Sea and Davis Strait and the effects on microwave signature returns; March and April, 1979

    Get PDF
    Aircraft data collected in the Bering Sea in March, 1979 using a 6.6 GH sub z (C Band) microwave radiometer and a 13.9 GH sub z (Ku Band) scatterometer, reinforce the difficulties in interpreting first year ice types found near the ice edge in a marginal ice zone. An ice interpretation scheme using data taken with a 13.3 GH sub z (Ku Band) scatterometer and a 19.4 GH sub z (K Band) radiometer in Davis Strait also shows ambiguity in the first year ice signal and indicates that ice interpretation becomes more difficult near the ice edge and under warmer conditions. This report also compares X Band SAR data taken in Davis Strait with similar imagery collected in the Bering Sea. Ice core samples from the Bering test area offer a basis for speculation on changes in ice morphology which affect the signature return at the ice edge, and help explain the difficulty of the sensors in discerning the two different ice types found on the photography and in the core samples

    Development of UHF radiometer

    Get PDF
    A wideband multifrequency UHF radiometer was initially developed to operate in the 500 to 710 MHz frequency range for the remote measurement of ocean water salinity. However, radio-frequency interference required a reconfiguration to operate in the single-frequency radio astronomy band of 608 to 614 MHz. Details of the radiometer development and testing are described. Flight testing over variable terrain provided a performance comparison of the UHF radiometer with an L-band radiometer for remote sensing of geophysical parameters. Although theoretically more sensitive, the UHF radiometer was found to be less desirable in practice than the L-band radiometer

    SMMR simulator radiative transfer calibration model. 1: Derivation

    Get PDF
    There are no author-identified significant results in this report

    Toward RADSCAT measurements over the sea and their interpretation

    Get PDF
    Investigations into several areas which are essential to the execution and interpretation of suborbital observations by composite radiometer - scatterometer sensor (RADSCAT) are reported. Experiments and theory were developed to demonstrate the remote anemometric capability of the sensor over the sea through various weather conditions. It is shown that weather situations found in extra tropical cyclones are useful for demonstrating the all weather capability of the composite sensor. The large scale fluctuations of the wind over the sea dictate the observational coverage required to correlate measurements with the mean surface wind speed. Various theoretical investigations were performed to establish a premise for the joint interpretation of the experiment data. The effects of clouds and rains on downward radiometric observations over the sea were computed. A method of predicting atmospheric attenuation from joint observations is developed. In other theoretical efforts, the emission and scattering characteristics of the sea were derived. Composite surface theories with coherent and noncoherent assumptions were employed

    Measurements of the dielectric properties of sea water at 1.43 GHz

    Get PDF
    Salinity and temperature of water surfaces of estuaries and bay regions are determined to accuracies of 1 ppt salinity and 0.3 kelvin surface temperature. L-band and S-band radiometers are used in combination as brightness temperature detectors. The determination of the brightness temperature versus salinity, with the water surface temperature as a parameter for 1.4 GHz, is performed with a capillary tube inserted into a resonance cavity. Detailed analysis of the results indicates that the measured values are accurate to better than 0.2 percent in the electric property epsilon' and 0.4 percent in epsilon''. The calculated brightness temperature as a function of temperature and salinity is better than 0.2 kelvin. Thus it is possible to reduce the measured data obtained with the two-frequency radiometer system with 1 ppt accuracy to values in the salinity range 5 to 40 ppt

    Technical background, chapter 3, part B

    Get PDF
    A description is given of the physics of electromagnetic scattering from the sea and a guideline is presented to relate an observable (such as the radar cross section) to the hydrodynamics or physical properties of the sea. As specific examples of the interdisciplinary science of electromagnetics and geophysical oceanography, the physics is discussed in connection with data provided by three instruments: namely, the scatterometer, the altimeter, and the imaging radar. The data provided by each instrument are discussed in context with specular point and Bragg scattering theories. Finally, the degrading effect of extraneous sources of noise is discussed as a limiting mechanism of the accuracy of the ocean surface measurement
    • …
    corecore