46 research outputs found

    How accurate are satellite estimates of precipitation over the north Indian Ocean?

    Full text link
    Following the launch of the Global Precipitation Measurement (GPM) Core Observatory in early 2014, motivated from the successful Tropical Rainfall Measurement Mission (TRMM) satellite, an advanced and sophisticated global multi-satellite precipitation product – Integrated Multi- satellitE Retrievals for GPM (IMERG) was released at finer spatio-temporal scales. This precipitation product has been upgraded recently after several refinements and supposed to be superior to other existing global or quasi-global multi-satellite precipitation estimates. In the present study, IMERG precipitation is comprehensively evaluated for the first time against moored buoy observations over the north Indian Ocean at hourly scale for the study period of March 2014 to December 2015. IMERG precipitation performs considerably better over the Bay of Bengal than the Arabian Sea in both detection and estimation. The systematic error in IMERG is appreciably lower by about 14%, however, it generally overestimates in-situ precipitation and also exhibits noticeable false alarms. Furthermore, IMERG essentially shows an improvement over the TRMM Multi-satellite Precipitation Analysis (TMPA) at a daily scale over the north Indian Ocean. IMERG precipitation estimates show overall promising error characteristics, but there is still a need of substantial efforts for improvement in the satellite-based precipitation estimation algorithms especially over data sparse regions such as north Indian Ocean

    Observational Evidence of the Basin-Wide Gyre Reversal in the Gulf of Taranto

    Get PDF
    The paper shows for the first time the observational evidence of basin-wide gyre reversal in the Gulf of Taranto (north-western Ionian Sea in the eastern Mediterranean Sea) by means of two specifically designed in situ oceanographic campaigns (based on CTD and ADCP measurements). The analysis of the in situ data shows a change in circulation from anticyclonic in October 2014 to cyclonic in June\u2013July 2016. Furthermore, long-term (1993\u20132018) analysis using gridded satellite altimetry data in the Gulf of Taranto shows that the cyclonic gyres are more frequent than anticyclonic gyres. The latter occur only for 2 to 3 years at a time in some decades

    Utility of Sea Surface Height anomaly (SSHa)in determination of Potential Fishing Zones

    Get PDF
    Physical processes in the oceans can be monitored by altimeters well before a radiometer can in terms of temperature or chlorophyll concentration. Herein we show the importance of Sea Surface Height anomaly (SSHa, retrieved with altimeter) in demarcating potential fishing zones. We also show how SSHa can help predict tuna movements, horizontally as well as vertically in the water column. Moreover, we prove these prediction with positively correlating SSHa to tuna hooking rates. In the end, we list out present and potential future sources from where SSHa can be retrieved in order to provide improved fishery advisories

    Can we detect submesoscale motions in drifter pair dispersion?

    Get PDF
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(9), (2019): 2237-2254, doi: 10.1175/JPO-D-18-0181.1.A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.This research was supported by the Air Sea Interaction Regional Initiative (ASIRI) under ONR Grant N00014-13-1-0451 (SE and AM) and ONR Grant N00014-13-1-0477 (VH and LC). Additionally, AM and SE thank NSF (Grant OCE-I434788) and ONR (Grant N00014-16-1-2470) for support; VH and LC were further supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156. We thank Joe LaCasce, Dhruv Balwada, and one anonymous reviewer for helpful comments and discussions that significantly improved this manuscript. The authors thank the captain and crew of the R/V Roger Revelle. The SVP-type drifters are part of the Global Drifter Program and supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156 and are available under http://www.aoml.noaa.gov/phod/dac/. The Ssalto/Duacs altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS, http://www.marine.copernicus.eu)

    Global in situ observations of essential climate and ocean variables at the air–sea interface

    Get PDF
    The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored

    Spatial and temporal variability of solar penetration depths in the Bay of Bengal and its impact on SST during the summer monsoon

    Get PDF
    Chlorophyll has long been known to influence air–sea gas exchange and CO2 drawdown. But chlorophyll also influences regional climate through its effect on solar radiation absorption and thus sea surface temperature (SST). In the Bay of Bengal, the effect of chlorophyll on SST has been demonstrated to have a significant impact on the Indian summer (southwest) monsoon. However, little is known about the drivers and impacts of chlorophyll variability in the Bay of Bengal during the southwest monsoon. Here we use observations of downwelling irradiance measured by an ocean glider and three profiling floats to determine the spatial and temporal variability of solar absorption across the southern Bay of Bengal during the 2016 summer monsoon. A two-band exponential solar absorption scheme is fitted to vertical profiles of photosynthetically active radiation to determine the effective scale depth of blue light. Scale depths of blue light are found to vary from 12 m during the highest (0.3–0.5 mg m−3) mixed-layer chlorophyll concentrations to over 25 m when the mixed-layer chlorophyll concentrations are below 0.1 mg m−3. The Southwest Monsoon Current and coastal regions of the Bay of Bengal are observed to have higher mixed-layer chlorophyll concentrations and shallower solar penetration depths than other regions of the southern Bay of Bengal. Substantial sub-daily variability in solar radiation absorption is observed, which highlights the importance of near-surface ocean processes in modulating mixed-layer chlorophyll. Simulations using a one-dimensional K-profile parameterization ocean mixed-layer model with observed surface forcing from July 2016 show that a 0.3 mg m−3 increase in chlorophyll concentration increases sea surface temperature by 0.35 ∘C in 1 month, with SST differences growing rapidly during calm and sunny conditions. This has the potential to influence monsoon rainfall around the Bay of Bengal and its intraseasonal variability

    Oceanic response to Hurricane Irma (2017) in the Exclusive Economic Zone of Cuba and the eastern Gulf of Mexico

    Get PDF
    An understanding of the oceanic response to tropical cyclones is of importance for studies on climate change, ecological variability and environmental protection. Hurricane Irma (2017, Atlantic Ocean) broke many records, including the fact that it was the first category 5 hurricane making landfall in Cuba since 1924. In this study, we assess the oceanic response of the waters of the Cuban Exclusive Economic Zone (EEZ) and the eastern Gulf of Mexico (GoM) to the passage of this hurricane. Overall, Irma led to a weak sea surface cooling in the EEZ, which was associated with the thermal structure of its waters and the fact that it was affected by the left-side quadrants of this hurricane. This cooling was driven by mixing and upwelling processes. In contrast, the chlorophyll-a (chl-a) concentration increase was comparable with climatological records, suggesting that horizontal advection of coastal waters and entrainment of chl-a rich waters from remote regions of the GoM influenced the post-storm chl-a concentration. Moreover, Irma increased the chl-a concentration in the northeastern GoM and stimulated the offshore transport of these chl-a-rich waters to the interior GoM. A high chl-a plume (HCP) extended southward across the eastern GoM during the first post-storm week of Irma, and these waters reached the northwestern Cuban coast following the Loop Current. An intensification of the geostrophic currents of an anticyclonic eddy at the upper front of the Loop Current, the formation of an anticyclonic-cyclonic eddy pair in the northeastern GoM and wind-driven advection governed the extension of this HCP

    Lagrangian dispersion and deformation in submesoscale flows

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanography and Applied Ocean Science and Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2019.Submesoscale currents, with horizontal length scales of 1-20 km, are an important element of upper ocean dynamics. These currents play a crucial role in the horizontal and vertical redistribution of tracers, the cascade of tracer variance to smaller scales, and in linking the mesoscale circulation with the dissipative scales. This thesis investigates submesoscale flows and their properties using Lagrangian trajectories of observed and modeled drifters. We analyze statistics of observed drifter pairs to characterize turbulent dispersion at submeso-scales. Contrary to theoretical expectations, we find that nonlocal velocity gradients associated with mesoscale eddies dominate the separation of drifters even at the kilometer scale. At submeso-scales, we observe energetic motions, such as near-inertial oscillations, that contribute to the energy spectrum but are inefficient at dispersion. Using trajectories in a model of submesoscale turbulence, we find that, if drifters have a vertical separation, vertical shear dominates the dispersion and conceals horizontal dispersion regimes from drifter observations. Particularly in submesoscale flows, vertical shear is orders of magnitude larger than horizontal gradients in velocity. Since conventional drifters in the ocean are not affected by vertical shear, it is likely that drifter-derived diffusivity underestimates the diffusivity that a tracer would experience. Lastly, we test and apply cluster-based methods, using three or more drifters, to estimate the velocity gradient tensor. Since velocity gradients become large at submesoscales, the divergence, strain, and vorticity control the evolution and deformation of clusters of drifters. Observing the velocity gradients using drifters, enables us to further constrain the governing dynamics and decipher submesoscale motions from inertia-gravity waves. These insights provide a Lagrangian perspective on submesoscale flows that illuminates scales that are challenging to observe from other platforms. We reveal observational and theoretical challenges that need to be overcome in future investigations.My doctoral studies in the WHOI/MIT Joint Program were funded by the National Science Foundation (OCE-I434788) and the Office of Naval Research (N00014-13-1-0451, Grant N00014-16-1-2470)
    corecore