160 research outputs found

    Manifestation and mitigation of node misbehaviour in adhoc networks

    Get PDF
    Mobile adhoc network is signified as a boon for advance and future wireless communication system. Owing to its self-establishing network features and decentralization, the system can actually establish a wireless communication with vast range of connectivity with the other nodes. However, the system of MANET is also beheld with various technical impediments owing to its inherent dynamic topologies. Although there are abundant volume of research work, but very few have been able to effectively address the node misbehavior problems in MANET. The paper initially tries to draw a line between different types of nodes in MANETs based on their behavior characteristics, then reviews some of the significant contribution of the prior researches for addressing node misbehavior issues. A major emphasis is laid on is the researches which use game theory as a tool to study and address the misbehavior problems. The manuscript is developed considering some of the latest and standard evidences of past 5 years and finally discusses the open issues related to the problems

    Performance evaluation of wireless IEEE 802.11(b) used for ad-hoc networks in an e-learning classroom network

    Get PDF
    Evaluation of wireless networks for performance evaluation is a popular research area and a wealth of literature exists in this area. Wireless networks in infrastructure mode as well as Ad-hoc networks such as MANETs are considered extensively. Simulation results are provided for E-learning scenarios for cases where wireless networks in infrastructure mode are employed, however the possibilities of using ad- hoc networks and performance evaluation of e-learning scenarios with ad hoc networks are not considered. This paper presents an evaluation of the performances for wireless Ad-hoc networks employed in typical e-learning environment by using the OPNET modeller. Numerical simulation results, discussions and comparisons are provided. The results can be of great help for optimisation studies in typical e-learning environments. The performance issues are considered together with scalability concerns

    Hard and Soft Thresholding Based Genetic enthused Reactive Routing Protocol for Heterogeneous Sensor Network

    Get PDF
    Wireless Sensor Network has a wide area of applications but the main problem in WSN is its lifetime.To solve the issue of short lifetime of the WSN, hard and soft thresholding is infused with genetic algorithm. By using the genetic algorithm the energy consumption of the nodes is greatly reduced and the lifetime of the WSN also increases. By making use of hard thresholding (HT) and soft thresholding (ST) the network becomes a reactive network which saves the energy of the nodes during the data transmission also. Moreover the genetic algorithm has been used for clustering of the nodes and the thresholding has been used for the data transmission in the proposed protocol. The simulations of have shown increase in stability and the lifetime of the genetic algorithm (GA) based reactive protocol as compared to the genetic algorithm (GA) inspired protocol

    On the Medium Access Control Protocols Suitable for Wireless Sensor Networks – A Survey

    Get PDF
    A MAC (Medium Access Control) protocol has direct impact on the energy efficiency and traffic characteristics of any Wireless Sensor Network (WSN). Due to the inherent differences in WSN’s requirements and application scenarios, different kinds of MAC protocols have so far been designed especially targeted to WSNs, though the primary mode of communications is wireless like any other wireless network. This is the subject topic of this survey work to analyze various aspects of the MAC protocols proposed for WSNs. To avoid collision and ensure reliability, before any data transmission between neighboring nodes in MAC layer, sensor nodes may need sampling channel and synchronizing. Based on these needs, we categorize the major MAC protocols into three classes, analyze each protocol’s relative advantages and disadvantages, and finally present a comparative summary which could give a snapshot of the state-of-the-art to guide other researchers find appropriate areas to work on. In spite of various existing survey works, we have tried to cover all necessary aspects with the latest advancements considering the major works in this area

    Evaluación del desempeño del protocolo de enrutamiento AODV para diferentes escenarios de redes de sensores inalámbricos

    Get PDF
    Emerging applications in the area of wireless sensor networks that include a wide variety of scenarios typically involve a significant number of nodes deployed in a wide area. To ensure proper communication between the network nodes to the base station, the messages are propagated by intermediate nodes, so a route with multiple links is established. In general, sensor nodes are characterized by limited resources; therefore it is essential to use protocols that ensure not only communication but also that save the most energy while providing scalability. Different routing protocols have been proposed for WSNs, but the reactive routing algorithms have shown be more energy efficient, which makes them suitable for wireless sensor networks. In this paper the performance of the reactive type protocol (Ad -Hoc On Demand Distance Vector) is evaluated under the simulation platform OMNeT++ through different scenarios . The AODV protocol has been chosen by the performance superiority comparing with Emerging applications in the area of wireless sensor networks that include a wide variety of scenarios typically involve a significant number of nodes deployed in a wide area. To ensure proper communication between the network nodes to the base station, the messages are propagated by intermediate nodes, so a route with multiple links is established. In general, sensor nodes are characterized by limited resources; therefore it is essential to use protocols that ensure not only communication but also that save the most energy while providing calability. Different routing protocols have been proposed for WSNs, but the reactive routing algorithms have shown be more energy efficient, which makes them suitable for wireless sensor networks. In this paper the performance of the reactive type protocol (Ad -Hoc On Demand Distance Vector) is evaluated under the simulation platform OMNeT++ through different scenarios . The AODV protocol has been chosen by the performance superiority comparing withLas aplicaciones emergentes en el área de redes de sensores inalámbricos comprenden una amplia variedad de escenarios que involucran típicamente un número significativo de nodos desplegados en un área amplia. Para garantizar una correcta comunicación entre los nodos de la red con la estación base, los mensajes se propagan por nodos intermedios, de forma que se establece una ruta con múltiples enlaces. En general, los nodos de una red de sensores se caracterizan por sus  recursos limitados, en consecuencia, es fundamental el uso de protocolos que garanticen no solo la comunicación sino también que permitan ahorrar la mayor cantidad de energía mientras proporcionan escalabilidad. Diferentes protocolos de enrutamiento han sido propuestos para redes inalámbricas de sensores, sin embargo, los algoritmos de enrutamiento de tipo reactivo han mostrado ser energéticamente más eficientes, lo que los hace adecuados para las redes de sensores nalámbricos. En este trabajo se evalúa el desempeño del protocolo de tipo reactivo (ad-hoc on demand distance vector) bajo la plataforma de simulación OMNeT++ probando diversos escenarios. El protocolo AODV ha sido elegido por la superioridad en el rendimiento, demostrada frente a otros protocolos reactivos reportados en la literatura. El protocolo ha sido evaluado bajo las siguientes métricas: tasa de entrega de paquetes, retardo promedio, sobrecarga de enrutamiento y consumo de energía. Los resultados obtenidos muestran que AODV reduce su desempeño conforme el número de nodos aumenta, en consecuencia, su usabilidad restringe la escalabilidad de la red, adicionalmente, los resultados demuestran que la distribución espacial de los nodos influye en el desempeño del protocolo. Para nuestro trabajo concreto, la distribución uniforme es la que muestra mejores resultados

    A State of Art Concept in Contriving of Underwater Networks

    Get PDF
    the underwater ocean environment is widely considered as one of the most difficult communications channels. Underwater acoustic networks have recently emerged as a new area of research in wireless networking. Underwater networks are generally formed by acoustically connected ocean - bottom sensors, underwater gateways and a surfa ce station, which provides a link to an on - shore control center. In recent years, there has been substantial work on protocol design for these networks with most efforts focusing on MAC and network layer protocols. Low communication bandwidth, large propag ation delay, floating node mobility, and high error probability are the challenges of building mobile underwater wireless sensor networks (WSN) for aquatic applications. Underwater sensor networks (WSNs) are the enabling technology for wide range of appl ications like monitoring the strong influences and impact of climate regulation, nutrient production, oil retrieval and transportation, man y scientific, environmental, commercial, safety, and military applications. This paper first introduces the concept o f UWSN, operation, applications and then reviews some recent developments within this research area and proposes an adaptive push system for dissemination of data in underwater wireless sensor networks. The goal of this paper is to survey the existing net w ork technology and its applicability to underwater acoustic channels. In this paper we provide an overview of recent medium acces s control, routing, transport, and cross - layer networking protocols. It examines the main approaches and challenges in the desi gn and implementation of underwater wireless sensor networks. Finally, some suggestions and promising solutions are given for th ese issues
    corecore