32,801 research outputs found

    Personalized medicine : the impact on chemistry

    Get PDF
    An effective strategy for personalized medicine requires a major conceptual change in the development and application of therapeutics. In this article, we argue that further advances in this field should be made with reference to another conceptual shift, that of network pharmacology. We examine the intersection of personalized medicine and network pharmacology to identify strategies for the development of personalized therapies that are fully informed by network pharmacology concepts. This provides a framework for discussion of the impact personalized medicine will have on chemistry in terms of drug discovery, formulation and delivery, the adaptations and changes in ideology required and the contribution chemistry is already making. New ways of conceptualizing chemistry’s relationship with medicine will lead to new approaches to drug discovery and hold promise of delivering safer and more effective therapies

    Systems approaches and algorithms for discovery of combinatorial therapies

    Full text link
    Effective therapy of complex diseases requires control of highly non-linear complex networks that remain incompletely characterized. In particular, drug intervention can be seen as control of signaling in cellular networks. Identification of control parameters presents an extreme challenge due to the combinatorial explosion of control possibilities in combination therapy and to the incomplete knowledge of the systems biology of cells. In this review paper we describe the main current and proposed approaches to the design of combinatorial therapies, including the empirical methods used now by clinicians and alternative approaches suggested recently by several authors. New approaches for designing combinations arising from systems biology are described. We discuss in special detail the design of algorithms that identify optimal control parameters in cellular networks based on a quantitative characterization of control landscapes, maximizing utilization of incomplete knowledge of the state and structure of intracellular networks. The use of new technology for high-throughput measurements is key to these new approaches to combination therapy and essential for the characterization of control landscapes and implementation of the algorithms. Combinatorial optimization in medical therapy is also compared with the combinatorial optimization of engineering and materials science and similarities and differences are delineated.Comment: 25 page

    Search algorithms as a framework for the optimization of drug combinations

    Get PDF
    Combination therapies are often needed for effective clinical outcomes in the management of complex diseases, but presently they are generally based on empirical clinical experience. Here we suggest a novel application of search algorithms, originally developed for digital communication, modified to optimize combinations of therapeutic interventions. In biological experiments measuring the restoration of the decline with age in heart function and exercise capacity in Drosophila melanogaster, we found that search algorithms correctly identified optimal combinations of four drugs with only one third of the tests performed in a fully factorial search. In experiments identifying combinations of three doses of up to six drugs for selective killing of human cancer cells, search algorithms resulted in a highly significant enrichment of selective combinations compared with random searches. In simulations using a network model of cell death, we found that the search algorithms identified the optimal combinations of 6-9 interventions in 80-90% of tests, compared with 15-30% for an equivalent random search. These findings suggest that modified search algorithms from information theory have the potential to enhance the discovery of novel therapeutic drug combinations. This report also helps to frame a biomedical problem that will benefit from an interdisciplinary effort and suggests a general strategy for its solution.Comment: 36 pages, 10 figures, revised versio

    How Can Network-Pharmacology Contribute to Antiepileptic Drug Development?

    Get PDF
    Network-pharmacology is a field of pharmacology emerging from the observation that most clinical drugs have multiple targets, contrasting with the previously dominant magic bullet paradigm which proposed the search of exquisitely selective drugs. What is more, drug targets are often involved in multiple diseases and frequently present co-expression patterns. Therefore, useful therapeutic information can be drawn from network representations of drug targets. Here, we discuss potential applications of drug-target networks in the field of antiepileptic drug development.Fil: Di Ianni, Mauricio Emiliano. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias BiolĂłgicas. CĂĄtedra de QuĂ­mica Medicinal; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; ArgentinaFil: Talevi, Alan. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias BiolĂłgicas. CĂĄtedra de QuĂ­mica Medicinal; Argentin

    The efficiency of multi-target drugs: the network approach might help drug design

    Full text link
    Despite considerable progress in genome- and proteome-based high-throughput screening methods and rational drug design, the number of successful single target drugs did not increase appreciably during the past decade. Network models suggest that partial inhibition of a surprisingly small number of targets can be more efficient than the complete inhibition of a single target. This and the success stories of multi-target drugs and combinatorial therapies led us to suggest that systematic drug design strategies should be directed against multiple targets. We propose that the final effect of partial, but multiple drug actions might often surpass that of complete drug action at a single target. The future success of this novel drug design paradigm will depend not only on a new generation of computer models to identify the correct multiple hits and their multi-fitting, low-affinity drug candidates but also on more efficient in vivo testing.Comment: 6 pages, 2 figures, 1 box, 38 reference
    • 

    corecore