9,694 research outputs found

    Forcing Mutual Coherence in Diode Laser Stacks

    Get PDF
    This paper will discuss both theoretical and experimental attempts to improve the spatial beam quality of diode laser stacks using an external optical system. An overview and derivation of the mathematics of both the optical system and diode lasers will be discussed. The experimental setup will be presented, as well as the fundamental theoretical and experimental results that suggest the external optical system used for this thesis fails to improve the beam quality of a diode laser stack

    Endoscopic measurements using a panoramic annular lens

    Get PDF
    The objective of this project was to design, build, demonstrate, and deliver a prototype system for making measurements within cavities. The system was to utilize structured lighting as the means for making measurements and was to rely on a stationary probe, equipped with a unique panoramic annular lens, to capture a cylindrical view of the illuminated cavity. Panoramic images, acquired with a digitizing camera and stored in a desk top computer, were to be linearized and analyzed by mouse-driven interactive software

    Pathfinder first light: alignment, calibration, and commissioning of the LINC-NIRVANA ground-layer adaptive optics subsystem

    Full text link
    We present descriptions of the alignment and calibration tests of the Pathfinder, which achieved first light during our 2013 commissioning campaign at the LBT. The full LINC-NIRVANA instrument is a Fizeau interferometric imager with fringe tracking and 2-layer natural guide star multi-conjugate adaptive optics (MCAO) systems on each eye of the LBT. The MCAO correction for each side is achieved using a ground layer wavefront sensor that drives the LBT adaptive secondary mirror and a mid-high layer wavefront sensor that drives a Xinetics 349 actuator DM conjugated to an altitude of 7.1 km. When the LINC-NIRVANA MCAO system is commissioned, it will be one of only two such systems on an 8-meter telescope and the only such system in the northern hemisphere. In order to mitigate risk, we take a modular approach to commissioning by decoupling and testing the LINC-NIRVANA subsystems individually. The Pathfinder is the ground-layer wavefront sensor for the DX eye of the LBT. It uses 12 pyramid wavefront sensors to optically co-add light from natural guide stars in order to make four pupil images that sense ground layer turbulence. Pathfinder is now the first LINC-NIRVANA subsystem to be fully integrated with the telescope and commissioned on sky. Our 2013 commissioning campaign consisted of 7 runs at the LBT with the tasks of assembly, integration and communication with the LBT telescope control system, alignment to the telescope optical axis, off-sky closed loop AO calibration, and finally closed loop on-sky AO. We present the programmatics of this campaign, along with the novel designs of our alignment scheme and our off-sky calibration test, which lead to the Pathfinder's first on-sky closed loop images

    Composite mirror facets for ground based gamma ray astronomy

    Get PDF
    Composite mirrors for gamma-ray astronomy have been developed to fulfill the specifications required for the next generation of Cherenkov telescopes represented by CTA (Cherenkov Telescope Array). In addition to the basic requirements on focus and reflection efficiency, the mirrors have to be stiff, lightweight, durable and cost efficient. In this paper, the technology developed to produce such mirrors is described, as well as some tests that have been performed to validate them. It is shown that these mirrors comply with the needs of CTA, making them good candidates for use on a significant part of the array.Comment: 16 pages, 13 figures, accepted to be published on NIM

    The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy

    Get PDF
    The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a very-high-definition camera (546 fast phototubes with 0.12 degrees spacing surrounded by 54 larger tubes in two guard rings) started operation in Autumn 1996 on the site of the former solar plant Themis (France). Using the atmospheric Cherenkov technique, it detects and identifies very high energy gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin

    The Active Mirror Control of the MAGIC Telescope

    Full text link
    One of the main design goals of the MAGIC telescopes is the very fast repositioning in case of Gamma Ray Burst (GRB) alarms, implying a low weight of the telescope dish. This is accomplished by using a space frame made of carbon fiber epoxy tubes, resulting in a strong but not very rigid support structure. Therefore it is necessary to readjust the individual mirror tiles to correct for deformations of the dish under varying gravitational load while tracking an object. We present the concept of the Active Mirror Control (AMC) as implemented in the MAGIC telescopes and the actual performance reached. Additionally we show that also telescopes using a stiff structure can benefit from using an AMC.Comment: Contribution to the 30th ICRC, Merida, Mexico, July 2007 on behalf of the MAGIC Collaboratio

    Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects

    Full text link
    We introduce a method based on the deflectometry principle for the reconstruction of specular objects exhibiting significant size and geometric complexity. A key feature of our approach is the deployment of an Automatic Virtual Environment (CAVE) as pattern generator. To unfold the full power of this extraordinary experimental setup, an optical encoding scheme is developed which accounts for the distinctive topology of the CAVE. Furthermore, we devise an algorithm for detecting the object of interest in raw deflectometric images. The segmented foreground is used for single-view reconstruction, the background for estimation of the camera pose, necessary for calibrating the sensor system. Experiments suggest a significant gain of coverage in single measurements compared to previous methods. To facilitate research on specular surface reconstruction, we will make our data set publicly available

    GRAVITY: the Calibration Unit

    Full text link
    We present in this paper the design and characterisation of a new sub-system of the VLTI 2nd generation instrument GRAVITY: the Calibration Unit. The Calibration Unit provides all functions to test and calibrate the beam combiner instrument: it creates two artificial stars on four beams, and dispose of four delay lines with an internal metrology. It also includes artificial stars for the tip-tilt and pupil guiding systems, as well as four metrology pick-up diodes, for tests and calibration of the corresponding sub-systems. The calibration unit also hosts the reference targets to align GRAVITY to the VLTI, and the safety shutters to avoid the metrology light to propagate in the VLTI-lab. We present the results of the characterisation and validtion of these differrent sub-units.Comment: 12 pages, 11 figures. Proceeding of SPIE 9146 "Optical and Infrared Interferometry IV
    corecore