1,161 research outputs found

    Evaluating Tessellation and Screen-Space Ambient Occlusion in WebGL-Based Real-Time Application

    Get PDF
    abstract: Tessellation and Screen-Space Ambient Occlusion are algorithms which have been widely-used in real-time rendering in the past decade. They aim to enhance the details of the mesh, cast better shadow effects and improve the quality of the rendered images in real time. WebGL is a web-based graphics library derived from OpenGL ES used for rendering in web applications. It is relatively new and has been rapidly evolving, this has resulted in it supporting a subset of rendering features normally supported by desktop applications. In this thesis, the research is focusing on evaluating Curved PN-Triangles tessellation with Screen Space Ambient Occlusion (SSAO), Horizon-Based Ambient Occlusion (HBAO) and Horizon-Based Ambient Occlusion Plus (HBAO+) in WebGL-based real-time application and comparing its performance to desktop based application and to discuss the capabilities, limitations and bottlenecks of WebGL 1.0.Dissertation/ThesisWebGL ProgramOpenGL ProgramMasters Thesis Computer Science 201

    Enhanced perception in volume visualization

    Get PDF
    Due to the nature of scientic data sets, the generation of convenient visualizations may be a difficult task, but crucial to correctly convey the relevant information of the data. When working with complex volume models, such as the anatomical ones, it is important to provide accurate representations, since a misinterpretation can lead to serious mistakes while diagnosing a disease or planning surgery. In these cases, enhancing the perception of the features of interest usually helps to properly understand the data. Throughout years, researchers have focused on different methods to improve the visualization of volume data sets. For instance, the definition of good transfer functions is a key issue in Volume Visualization, since transfer functions determine how materials are classified. Other approaches are based on simulating realistic illumination models to enhance the spatial perception, or using illustrative effects to provide the level of abstraction needed to correctly interpret the data. This thesis contributes with new approaches to enhance the visual and spatial perception in Volume Visualization. Thanks to the new computing capabilities of modern graphics hardware, the proposed algorithms are capable of modifying the illumination model and simulating illustrative motifs in real time. In order to enhance local details, which are useful to better perceive the shape and the surfaces of the volume, our first contribution is an algorithm that employs a common sharpening operator to modify the lighting applied. As a result, the overall contrast of the visualization is enhanced by brightening the salient features and darkening the deeper regions of the volume model. The enhancement of depth perception in Direct Volume Rendering is also covered in the thesis. To do this, we propose two algorithms to simulate ambient occlusion: a screen-space technique based on using depth information to estimate the amount of light occluded, and a view-independent method that uses the density values of the data set to estimate the occlusion. Additionally, depth perception is also enhanced by adding halos around the structures of interest. Maximum Intensity Projection images provide a good understanding of the high intensity features of the data, but lack any contextual information. In order to enhance the depth perception in such a case, we present a novel technique based on changing how intensity is accumulated. Furthermore, the perception of the spatial arrangement of the displayed structures is also enhanced by adding certain colour cues. The last contribution is a new manipulation tool designed for adding contextual information when cutting the volume. Based on traditional illustrative effects, this method allows the user to directly extrude structures from the cross-section of the cut. As a result, the clipped structures are displayed at different heights, preserving the information needed to correctly perceive them.Debido a la naturaleza de los datos científicos, visualizarlos correctamente puede ser una tarea complicada, pero crucial para interpretarlos de forma adecuada. Cuando se trabaja con modelos de volumen complejos, como es el caso de los modelos anatómicos, es importante generar imágenes precisas, ya que una mala interpretación de las mismas puede producir errores graves en el diagnóstico de enfermedades o en la planificación de operaciones quirúrgicas. En estos casos, mejorar la percepción de las zonas de interés, facilita la comprensión de la información inherente a los datos. Durante décadas, los investigadores se han centrado en el desarrollo de técnicas para mejorar la visualización de datos volumétricos. Por ejemplo, los métodos que permiten definir buenas funciones de transferencia son clave, ya que éstas determinan cómo se clasifican los materiales. Otros ejemplos son las técnicas que simulan modelos de iluminación realista, que permiten percibir mejor la distribución espacial de los elementos del volumen, o bien los que imitan efectos ilustrativos, que proporcionan el nivel de abstracción necesario para interpretar correctamente los datos. El trabajo presentado en esta tesis se centra en mejorar la percepción de los elementos del volumen, ya sea modificando el modelo de iluminación aplicado en la visualización, o simulando efectos ilustrativos. Aprovechando la capacidad de cálculo de los nuevos procesadores gráficos, se describen un conjunto de algoritmos que permiten obtener los resultados en tiempo real. Para mejorar la percepción de detalles locales, proponemos modificar el modelo de iluminación utilizando una conocida herramienta de procesado de imágenes (unsharp masking). Iluminando aquellos detalles que sobresalen de las superficies y oscureciendo las zonas profundas, se mejora el contraste local de la imagen, con lo que se consigue realzar los detalles de superficie. También se presentan diferentes técnicas para mejorar la percepción de la profundidad en Direct Volume Rendering. Concretamente, se propone modificar la iluminación teniendo en cuenta la oclusión ambiente de dos maneras diferentes: la primera utiliza los valores de profundidad en espacio imagen para calcular el factor de oclusión del entorno de cada pixel, mientras que la segunda utiliza los valores de densidad del volumen para aproximar dicha oclusión en cada vóxel. Además de estas dos técnicas, también se propone mejorar la percepción espacial y de la profundidad de ciertas estructuras mediante la generación de halos. La técnica conocida como Maximum Intensity Projection (MIP) permite visualizar los elementos de mayor intensidad del volumen, pero no aporta ningún tipo de información contextual. Para mejorar la percepción de la profundidad, proponemos una nueva técnica basada en cambiar la forma en la que se acumula la intensidad en MIP. También se describe un esquema de color para mejorar la percepción espacial de los elementos visualizados. La última contribución de la tesis es una herramienta de manipulación directa de los datos, que permite preservar la información contextual cuando se realizan cortes en el modelo de volumen. Basada en técnicas ilustrativas tradicionales, esta técnica permite al usuario estirar las estructuras visibles en las secciones de los cortes. Como resultado, las estructuras de interés se visualizan a diferentes alturas sobre la sección, lo que permite al observador percibirlas correctamente

    Doctor of Philosophy

    Get PDF
    dissertationReal-time global illumination is the next frontier in real-time rendering. In an attempt to generate realistic images, games have followed the film industry into physically based shading and will soon begin integrating global illumination techniques. Traditional methods require too much memory and too much time to compute for real-time use. With Modular and Delta Radiance Transfer we precompute a scene-independent, low-frequency basis that allows us to calculate complex indirect lighting calculations in a much lower dimensional subspace with a reduced memory footprint and real-time execution. The results are then applied as a light map on many different scenes. To improve the low frequency results, we also introduce a novel screen space ambient occlusion technique that allows us to generate a smoother result with fewer samples. These three techniques, low and high frequency used together, provide a viable indirect lighting solution that can be run in milliseconds on today's hardware, providing a useful new technique for indirect lighting in real-time graphics

    Vector occluders: an empirical approximation for rendering global illumination effects in real-time

    Get PDF
    Precomputation has been previously used as a means to get global illumination effects in real-time on consumer hardware of the day. Our work uses Sloan???s 2002 PRT method as a starting point, and builds on it with two new ideas. We first explore an alternative representation for PRT data. ???Cpherical harmonics??? (CH) are introduced as an alternative to spherical harmonics, by substituting the Chebyshev polynomial in the place of the Legendre polynomial as the orthogonal polynomial in the spherical harmonics definition. We show that CH can be used instead of SH for PRT with near-equivalent performance. ???Vector occluders??? (VO) are introduced as a novel, precomputed, real-time, empirical technique for adding global illumination effects including shadows, caustics and interreflections to a locally illuminated scene on static geometry. VO encodes PRT data as simple vectors instead of using SH. VO can handle point lights, whereas a standard SH implementation cannot

    Using advanced illumination techniques to enhance realism and perception of volume visualizations

    Full text link
    Die Nutzung volumetrischer Daten ist in vergangenen Jahren immer häufiger geworden. Die Erzeugung von aussagekräfigen und verständlichen Bildern aus diesen Daten ist daher wichtiger denn je. Die Simulation von Beleuchtungsphänomenen ist eine Möglichkeit, die Wahrnehmung und den Realismus solcher Bilder zu verbessern. Diese Dissertation beschäftigt sich mit der Effektivität von existierenden Modellen zur Volumenillumination und präsentiert einige neue Techniken und Anwendungen für diesen Bereich der Computergrafik. Es werden Methoden vorgestellt, um die Interaktion von Licht und Material im Kontext von Volumendaten zu simulieren. Weiterhin wird eine umfangreichenNutzerstudie präsentiert, deren Ziel es war, den Einfluss von verschiedenen existierenden Modellen zur Volumenillumination auf den Betrachter zu untersuchen. Abschließend wird eine Anwendung zur Darstellung und visuellen Analyse von Hirndaten präsentiert, in der Volumenillumination neben weiteren neuartigen Visualisierungen zum Einsatz kommt.<br

    Matrix-based Parameterizations of Skeletal Animated Appearance

    Full text link
    Alors que le rendu réaliste gagne de l’ampleur dans l’industrie, les techniques à la fois photoréalistes et basées sur la physique, complexes en terme de temps de calcul, requièrent souvent une étape de précalcul hors-ligne. Les applications en temps réel, comme les jeux vidéo et la réalité virtuelle, se basent sur des techniques d’approximation et de précalcul pour atteindre des résultats réalistes. L’objectif de ce mémoire est l’investigation de différentes paramétrisations animées pour concevoir une technique d’approximation de rendu réaliste en temps réel. Notre investigation se concentre sur le rendu d’effets visuels appliqués à des personnages animés par modèle d’armature squelettique. Des paramétrisations combinant des données de mouvement et d’apparence nous permettent l’extraction de paramètres pour le processus en temps réel. Établir une dépendance linéaire entre le mouvement et l’apparence est ainsi au coeur de notre méthode. Nous nous concentrons sur l’occultation ambiante, où la simulation de l’occultation est causée par des objets à proximité bloquant la lumière environnante, jugée uniforme. L’occultation ambiante est une technique indépendante du point de vue, et elle est désormais essentielle pour le réalisme en temps réel. Nous examinons plusieurs paramétrisations qui traitent l’espace du maillage en fonction de l’information d’animation par squelette et/ou du maillage géométrique. Nous sommes capables d’approximer la réalité pour l’occultation ambiante avec une faible erreur. Notre technique pourrait également être étendue à d’autres effets visuels tels le rendu de la peau humaine (diffusion sous-surface), les changements de couleur dépendant du point de vue, les déformations musculaires, la fourrure ou encore les vêtements.While realistic rendering gains more popularity in industry, photorealistic and physically- based techniques often necessitate offline processing due to their computational complexity. Real-time applications, such as video games and virtual reality, rely mostly on approximation and precomputation techniques to achieve realistic results. The objective of this thesis is to investigate different animated parameterizations in order to devise a technique that can approximate realistic rendering results in real time. Our investigation focuses on rendering visual effects applied to skinned skeletonbased characters. Combined parameterizations of motion and appearance data are used to extract parameters that can be used in a real-time approximation. Trying to establish a linear dependency between motion and appearance is the basis of our method. We focus on ambient occlusion, a simulation of shadowing caused by objects that block ambient light. Ambient occlusion is a view-independent technique important for realism. We consider different parameterization techniques that treat the mesh space depending on skeletal animation information and/or mesh geometry. We are able to approximate ground-truth ambient occlusion with low error. Our technique can also be extended to different visual effects, such as rendering human skin (subsurface scattering), changes in color due to the view orientation, deformation of muscles, fur, or clothe

    Photorealistic Leaf Shaders

    Get PDF
    This report details the design and implementation of a realtime Global Illumination approximation for rendering leaves using Light Propagation Volumes (LPVs), simulating both reflected and transmitted diffuse light. It employs 4th degree polynomial Spherical Harmonics on separate color channels to represent the flow of light, and its complexity is independent of resolution or geometry. A Reflective Shadow Map is used to build a model of the lighting environment inside the LPV, which is then processed to propagate light through the scene. The program runs at an average of 40 FPS on modern graphics hardware and uses less than 50MB of system memory and 70MB of GPU memory, making it a viable option for realtime rendering applications

    Efficient Geometry and Illumination Representations for Interactive Protein Visualization

    Get PDF
    This dissertation explores techniques for interactive simulation and visualization for large protein datasets. My thesis is that using efficient representations for geometric and illumination data can help in developing algorithms that achieve better interactivity for visual and computational proteomics. I show this by developing new algorithms for computation and visualization for proteins. I also show that the same insights that resulted in better algorithms for visual proteomics can also be turned around and used for more efficient graphics rendering. Molecular electrostatics is important for studying the structures and interactions of proteins, and is vital in many computational biology applications, such as protein folding and rational drug design. We have developed a system to efficiently solve the non-linear Poisson-Boltzmann equation governing molecular electrostatics. Our system simultaneously improves the accuracy and the efficiency of the solution by adaptively refining the computational grid near the solute-solvent interface. In addition, we have explored the possibility of mapping the PBE solution onto GPUs. We use pre-computed accumulation of transparency with spherical-harmonics-based compression to accelerate volume rendering of molecular electrostatics. We have also designed a time- and memory-efficient algorithm for interactive visualization of large dynamic molecules. With view-dependent precision control and memory-bandwidth reduction, we have achieved real-time visualization of dynamic molecular datasets with tens of thousands of atoms. Our algorithm is linearly scalable in the size of the molecular datasets. In addition, we present a compact mathematical model to efficiently represent the six-dimensional integrals of bidirectional surface scattering reflectance distribution functions (BSSRDFs) to render scattering effects in translucent materials interactively. Our analysis first reduces the complexity and dimensionality of the problem by decomposing the reflectance field into non-scattered and subsurface-scattered reflectance fields. While the non-scattered reflectance field can be described by 4D bidirectional reflectance distribution functions (BRDFs), we show that the scattered reflectance field can also be represented by a 4D field through pre-processing the neighborhood scattering radiance transfer integrals. We use a novel reference-points scheme to compactly represent the pre-computed integrals using a hierarchical and progressive spherical harmonics representation. Our algorithm scales linearly with the number of mesh vertices
    • …
    corecore