39,284 research outputs found

    Predicted Virtual Soft Shadow Maps with High Quality Filtering

    Get PDF
    International audienceIn this paper we present a novel image based algorithm to render visually plausible anti-aliased soft shadows in a robust and efficient manner. To achieve both high visual quality and high performance, it employs an accurate shadow map filtering method which guarantees smooth penumbrae and high quality anisotropic anti-aliasing of the sharp transitions. Unlike approaches based on pre-filtering approximations, our approach does not suffer from light bleeding or losing contact shadows. Discretization artefacts are avoided by creating virtual shadow maps on the fly according to a novel shadow map resolution prediction model. This model takes into account the screen space frequency of the penumbrae via a perceptual metric which has been directly established from an appropriate user study. Consequently, our algorithm always generates shadow maps with minimal resolutions enabling high performance while guarantying high quality. Thanks to this perceptual model, our algorithm can sometimes be faster at rendering soft shadows than hard shadows. It can render game-like scenes at very high frame rates, and extremely large and complex scenes such as CAD models at interactive rates. In addition, our algorithm is highly scalable, and the quality versus performance trade-off can be easily tweaked

    Approaching Visual Search in Photo-Realistic Scenes

    Full text link
    Visual search is extended from the domain of polygonal figures presented on a uniform background to scenes in which search is for a photo-realistic object in a dense, naturalistic background. Scene generation for these displays relies on a powerful solid modeling program to define the three dimensional forms, surface properties, relative positions, and illumination of the objects and a rendering program to produce an image. Search in the presented experiments is for a rock with specific properties among other, similar rocks, although the method described can be generalized to other situations. Using this technique we explore the effects of illumination and shadows in aiding search for a rock in front of and closer to the viewer than other rocks in the scene. For these scenes, shadows of two different contrast levels can significantly deet·ease reaction times for displays in which target rocks are similar to distractor rocks. However, when the target rock is itself easily distinguishable from dis tractors on the basis of form, the presence or absence of shadows has no discernible effect. To relate our findings to those for earlier polygonal displays, we simplified the non-shadow displays so that only boundary information remained. For these simpler displays, search slopes (the reaction time as a function of the number of distractors) were significantly faster, indicating that the more complex photo-realistic objects require more time to process for visual search. In contrast with several previous experiments involving polygonal figures, we found no evidence for an effect of illumination direction on search times

    Screen Space Ambient Occlusion Using Partial Scene Representation

    Get PDF
    Screen space ambient occlusion (SSAO) is a technique in real-time rendering forapproximating amount by which a point on a surface is occluded by surrounding geometry, whichhelps in adding soft shadows to diffuse objects. Most of the current methods use the depth bufferas an approximation to scene geometry to sample the occlusion factor. We introduce a noveltechnique which uses a partial representation of the scene (here triangle information in screenspace) using compact triangle storage and a ray-marching approach to find a betterapproximation of the occlusion factor.Computer Scienc

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Engineering visualization utilizing advanced animation

    Get PDF
    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Lighting the Farmstead

    Get PDF
    PDF pages: 3

    Photo-Realistic Scenes with Cast Shadows Show No Above/Below Search Asymmetries for Illumination Direction

    Full text link
    Visual search is extended from the domain of polygonal figures presented on a uniform field to photo-realistic scenes containing target objects in dense, naturalistic backgrounds. The target in a trial is a computer-rendered rock protruding in depth from a "wall" of rocks of roughly similar size but different shapes. Subjects responded "present" when one rock appeared closer than the rest, owing to occlusions or cast shadows, and "absent" when all rocks appeared to be at the same depth. Results showed that cast shadows can significantly decrease reaction times compared to scenes with no cast shadows, in which the target was revealed only by occlusions of rocks behind it. A control experiment showed that cast shadows can be utilized even for displays involving rocks of several achromatic surface colors (dark through light), in which the shadow cast by the target rock was not the darkest region in the scene. Finally, in contrast with reports of experiments by others involving polygonal figures, we found no evidence for an effect of illumination direction (above vs. below) on search times.Office of Naval Research (N00014-94-1-0597, N00014-95-1-0409
    corecore