389 research outputs found

    Automatic Synchronization of Music Data in Score-, MIDI- and PCM-Format

    Get PDF
    In this paper we present algorithms for the automatic time-synchronization of score-, MIDI- or PCM-data streams which represent the same polyphonic piano piece

    Towards Bridging the Gap between Sheet Music and Audio

    Get PDF
    Sheet music and audio recordings represent and describe music on different semantic levels. Sheet music describes abstract high-level parameters such as notes, keys, measures, or repeats in a visual form. Because of its explicitness and compactness, most musicologists discuss and analyze the meaning of music on the basis of sheet music. On the contrary, most people enjoy music by listening to audio recordings, which represent music in an acoustic form. In particular, the nuances and subtleties of musical performances, which are generally not written down in the score, make the music come alive. In this paper, we address the problem of bridging the gap between the sheet music domain and the audio domain. In particular, we discuss aspects on music representations, music synchronization, and optical music recognition, while indicating various strategies and open research problems

    Towards Automated Processing of Folk Song Recordings

    Get PDF
    Folk music is closely related to the musical culture of a specific nation or region. Even though folk songs have been passed down mainly by oral tradition, most musicologists study the relation between folk songs on the basis of symbolic music descriptions, which are obtained by transcribing recorded tunes into a score-like representation. Due to the complexity of audio recordings, once having the transcriptions, the original recorded tunes are often no longer used in the actual folk song research even though they still may contain valuable information. In this paper, we present various techniques for making audio recordings more easily accessible for music researchers. In particular, we show how one can use synchronization techniques to automatically segment and annotate the recorded songs. The processed audio recordings can then be made accessible along with a symbolic transcript by means of suitable visualization, searching, and navigation interfaces to assist folk song researchers to conduct large scale investigations comprising the audio material

    Signal Processing Methods for Music Synchronization, Audio Matching, and Source Separation

    Get PDF
    The field of music information retrieval (MIR) aims at developing techniques and tools for organizing, understanding, and searching multimodal information in large music collections in a robust, efficient and intelligent manner. In this context, this thesis presents novel, content-based methods for music synchronization, audio matching, and source separation. In general, music synchronization denotes a procedure which, for a given position in one representation of a piece of music, determines the corresponding position within another representation. Here, the thesis presents three complementary synchronization approaches, which improve upon previous methods in terms of robustness, reliability, and accuracy. The first approach employs a late-fusion strategy based on multiple, conceptually different alignment techniques to identify those music passages that allow for reliable alignment results. The second approach is based on the idea of employing musical structure analysis methods in the context of synchronization to derive reliable synchronization results even in the presence of structural differences between the versions to be aligned. Finally, the third approach employs several complementary strategies for increasing the accuracy and time resolution of synchronization results. Given a short query audio clip, the goal of audio matching is to automatically retrieve all musically similar excerpts in different versions and arrangements of the same underlying piece of music. In this context, chroma-based audio features are a well-established tool as they possess a high degree of invariance to variations in timbre. This thesis describes a novel procedure for making chroma features even more robust to changes in timbre while keeping their discriminative power. Here, the idea is to identify and discard timbre-related information using techniques inspired by the well-known MFCC features, which are usually employed in speech processing. Given a monaural music recording, the goal of source separation is to extract musically meaningful sound sources corresponding, for example, to a melody, an instrument, or a drum track from the recording. To facilitate this complex task, one can exploit additional information provided by a musical score. Based on this idea, this thesis presents two novel, conceptually different approaches to source separation. Using score information provided by a given MIDI file, the first approach employs a parametric model to describe a given audio recording of a piece of music. The resulting model is then used to extract sound sources as specified by the score. As a computationally less demanding and easier to implement alternative, the second approach employs the additional score information to guide a decomposition based on non-negative matrix factorization (NMF)

    Engineering systematic musicology : methods and services for computational and empirical music research

    Get PDF
    One of the main research questions of *systematic musicology* is concerned with how people make sense of their musical environment. It is concerned with signification and meaning-formation and relates musical structures to effects of music. These fundamental aspects can be approached from many different directions. One could take a cultural perspective where music is considered a phenomenon of human expression, firmly embedded in tradition. Another approach would be a cognitive perspective, where music is considered as an acoustical signal of which perception involves categorizations linked to representations and learning. A performance perspective where music is the outcome of human interaction is also an equally valid view. To understand a phenomenon combining multiple perspectives often makes sense. The methods employed within each of these approaches turn questions into concrete musicological research projects. It is safe to say that today many of these methods draw upon digital data and tools. Some of those general methods are feature extraction from audio and movement signals, machine learning, classification and statistics. However, the problem is that, very often, the *empirical and computational methods require technical solutions* beyond the skills of researchers that typically have a humanities background. At that point, these researchers need access to specialized technical knowledge to advance their research. My PhD-work should be seen within the context of that tradition. In many respects I adopt a problem-solving attitude to problems that are posed by research in systematic musicology. This work *explores solutions that are relevant for systematic musicology*. It does this by engineering solutions for measurement problems in empirical research and developing research software which facilitates computational research. These solutions are placed in an engineering-humanities plane. The first axis of the plane contrasts *services* with *methods*. Methods *in* systematic musicology propose ways to generate new insights in music related phenomena or contribute to how research can be done. Services *for* systematic musicology, on the other hand, support or automate research tasks which allow to change the scope of research. A shift in scope allows researchers to cope with larger data sets which offers a broader view on the phenomenon. The second axis indicates how important Music Information Retrieval (MIR) techniques are in a solution. MIR-techniques are contrasted with various techniques to support empirical research. My research resulted in a total of thirteen solutions which are placed in this plane. The description of seven of these are bundled in this dissertation. Three fall into the methods category and four in the services category. For example Tarsos presents a method to compare performance practice with theoretical scales on a large scale. SyncSink is an example of a service

    Efficiency in audio processing : filter banks and transcoding

    Get PDF
    Audio transcoding is the conversion of digital audio from one compressed form A to another compressed form B, where A and B have different compression properties, such as a different bit-rate, sampling frequency or compression method. This is typically achieved by decoding A to an intermediate uncompressed form, and then encoding it to B. A significant portion of the involved computational effort pertains to operating the synthesis filter bank, which is an important processing block in the decoding stage, and the analysis filter bank, which is an important processing block in the encoding stage. This thesis presents methods for efficient implementations of filter banks and audio transcoders, and is separated into two main parts. In the first part, a new class of Frequency Response Masking (FRM) filter banks is introduced. These filter banks are usually characterized by comprising a tree-structured cascade of subfilters, which have small individual filter lengths. Methods of complexity reduction are proposed for the scenarios when the filter banks are operated in single-rate mode, and when they are operated in multirate mode; and for the scenarios when the input signal is real-valued, and when it is complex-valued. An efficient variable bandwidth FRM filter bank is designed by using signed-powers-of-two reduction of its subfilter coefficients. Our design has a complexity an order lower than that of an octave filter bank with the same specifications. In the second part, the audio transcoding process is analyzed. Audio transcoding is modeled as a cascaded quantization process, and the cascaded quantization of an input signal is analyzed under different conditions, for the MPEG 1 Layer 2 and MP3 compression methods. One condition is the input-to-output delay of the transcoder, which is known to have an impact on the audio quality of the transcoded material. Methods to reduce the error in a cascaded quantization process are also proposed. An ultra-fast MP3 transcoder that requires only integer operations is proposed and implemented in software. Our implementation shows an improvement by a factor of 5 to 16 over other best known transcoders in terms of execution speed

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data
    corecore