1,177 research outputs found

    An Evaluation of Score Level Fusion Approaches for Fingerprint and Finger-vein Biometrics

    Get PDF
    Biometric systems have to address many requirements, such as large population coverage, demographic diversity, varied deployment environment, as well as practical aspects like performance and spoofing attacks. Traditional unimodal biometric systems do not fully meet the aforementioned requirements making them vulnerable and susceptible to different types of attacks. In response to that, modern biometric systems combine multiple biometric modalities at different fusion levels. The fused score is decisive to classify an unknown user as a genuine or impostor. In this paper, we evaluate combinations of score normalization and fusion techniques using two modalities (fingerprint and finger-vein) with the goal of identifying which one achieves better improvement rate over traditional unimodal biometric systems. The individual scores obtained from finger-veins and fingerprints are combined at score level using three score normalization techniques (min-max, z-score, hyperbolic tangent) and four score fusion approaches (minimum score, maximum score, simple sum, user weighting). The experimental results proved that the combination of hyperbolic tangent score normalization technique with the simple sum fusion approach achieve the best improvement rate of 99.98%.Comment: 10 pages, 5 figures, 3 tables, conference, NISK 201

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    Combining multiple Iris matchers using advanced fusion techniques to enhance Iris matching performance

    Get PDF
    M.Phil. (Electrical And Electronic Engineering)The enormous increase in technology advancement and the need to secure information e ectively has led to the development and implementation of iris image acquisition technologies for automated iris recognition systems. The iris biometric is gaining popularity and is becoming a reliable and a robust modality for future biometric security. Its wide application can be extended to biometric security areas such as national ID cards, banking systems such as ATM, e-commerce, biometric passports but not applicable in forensic investigations. Iris recognition has gained valuable attention in biometric research due to the uniqueness of its textures and its high recognition rates when employed on high biometric security areas. Identity veri cation for individuals becomes a challenging task when it has to be automated with a high accuracy and robustness against spoo ng attacks and repudiation. Current recognition systems are highly a ected by noise as a result of segmentation failure, and this noise factors increase the biometric error rates such as; the FAR and the FRR. This dissertation reports an investigation of score level fusion methods which can be used to enhance iris matching performance. The fusion methods implemented in this project includes, simple sum rule, weighted sum rule fusion, minimum score and an adaptive weighted sum rule. The proposed approach uses an adaptive fusion which maps feature quality scores with the matcher. The fused scores were generated from four various iris matchers namely; the NHD matcher, the WED matcher, the WHD matcher and the POC matcher. To ensure homogeneity of matching scores before fusion, raw scores were normalized using the tanh-estimators method, because it is e cient and robust against outliers. The results were tested against two publicly available databases; namely, CASIA and UBIRIS using two statistical and biometric system measurements namely the AUC and the EER. The results of these two measures gives the AUC = 99:36% for CASIA left images, the AUC = 99:18% for CASIA right images, the AUC = 99:59% for UBIRIS database and the Equal Error Rate (EER) of 0.041 for CASIA left images, the EER = 0:087 for CASIA right images and with the EER = 0:038 for UBIRIS images

    A Multi-Biometric System Based on Feature and Score Level Fusions

    Get PDF
    In general, the information of multiple biometric modalities is fused at a single level, for example, score level or feature level. The recognition accuracy of a multimodal biometric system may not be improved by carrying fusion at a single level, since one matcher may provide a performance lower than that provided by other matchers. In view of this, we propose a new fusion scheme, referred to as the matcher performance-based (MPb) fusion scheme, in which the fusion is carried out at two levels, feature level, and score level, to improve the overall recognition accuracy. First, we consider the performance of the individual matchers in order to find out which of the modalities should be used for fusion at the feature level. Then, the selected modalities are fused at this level by utilizing their encoded features. Next, we fuse the score obtained from the feature-level fusion with that of the modality for which the performance is the highest. In order to carry out this fusion, a new normalization technique referred to as the overlap extrema-variation-based anchored min-max (OEVBAMM) normalization technique, is also proposed. By considering three modalities, namely, fingerprint, palmprint, and earprint, the performance of the proposed fusion scheme as well as that of the single level fusion scheme, both with various normalization and weighting techniques are evaluated in terms of a number of metrics. It is shown that the multi-biometric system based on the proposed fusion scheme provides the best performance when it employs the new normalization technique and the confidence-based weighting (CBW) method

    Analysis of Score-Level Fusion Rules for Deepfake Detection

    Get PDF
    Deepfake detection is of fundamental importance to preserve the reliability of multimedia communications. Modern deepfake detection systems are often specialized on one or more types of manipulation but are not able to generalize. On the other hand, when properly designed, ensemble learning and fusion techniques can reduce this issue. In this paper, we exploit the complementarity of different individual classifiers and evaluate which fusion rules are best suited to increase the generalization capacity of modern deepfake detection systems. We also give some insights to designers for selecting the most appropriate approach

    A multimodal retina-iris biometric system using the levenshtein distance for spatial feature comparison

    Get PDF
    The recent developments of information technologies, and the consequent need for access to distributed services and resources, require robust and reliable authentication systems. Biometric systems can guarantee high levels of security and multimodal techniques, which combine two or more biometric traits, warranting constraints that are more stringent during the access phases. This work proposes a novel multimodal biometric system based on iris and retina combination in the spatial domain. The proposed solution follows the alignment and recognition approach commonly adopted in computational linguistics and bioinformatics; in particular, features are extracted separately for iris and retina, and the fusion is obtained relying upon the comparison score via the Levenshtein distance. We evaluated our approach by testing several combinations of publicly available biometric databases, namely one for retina images and three for iris images. To provide comprehensive results, detection error trade-off-based metrics, as well as statistical analyses for assessing the authentication performance, were considered. The best achieved False Acceptation Rate and False Rejection Rate indices were and 3.33%, respectively, for the multimodal retina-iris biometric approach that overall outperformed the unimodal systems. These results draw the potential of the proposed approach as a multimodal authentication framework using multiple static biometric traits
    • 

    corecore