3,039 research outputs found

    An Efficient Approximate kNN Graph Method for Diffusion on Image Retrieval

    Full text link
    The application of the diffusion in many computer vision and artificial intelligence projects has been shown to give excellent improvements in performance. One of the main bottlenecks of this technique is the quadratic growth of the kNN graph size due to the high-quantity of new connections between nodes in the graph, resulting in long computation times. Several strategies have been proposed to address this, but none are effective and efficient. Our novel technique, based on LSH projections, obtains the same performance as the exact kNN graph after diffusion, but in less time (approximately 18 times faster on a dataset of a hundred thousand images). The proposed method was validated and compared with other state-of-the-art on several public image datasets, including Oxford5k, Paris6k, and Oxford105k

    Low-shot learning with large-scale diffusion

    Full text link
    This paper considers the problem of inferring image labels from images when only a few annotated examples are available at training time. This setup is often referred to as low-shot learning, where a standard approach is to re-train the last few layers of a convolutional neural network learned on separate classes for which training examples are abundant. We consider a semi-supervised setting based on a large collection of images to support label propagation. This is possible by leveraging the recent advances on large-scale similarity graph construction. We show that despite its conceptual simplicity, scaling label propagation up to hundred millions of images leads to state of the art accuracy in the low-shot learning regime

    SeeSaw: Interactive Ad-hoc Search Over Image Databases

    Full text link
    As image datasets become ubiquitous, the problem of ad-hoc searches over image data is increasingly important. Many high-level data tasks in machine learning, such as constructing datasets for training and testing object detectors, imply finding ad-hoc objects or scenes within large image datasets as a key sub-problem. New foundational visual-semantic embeddings trained on massive web datasets such as Contrastive Language-Image Pre-Training (CLIP) can help users start searches on their own data, but we find there is a long tail of queries where these models fall short in practice. SeeSaw is a system for interactive ad-hoc searches on image datasets that integrates state-of-the-art embeddings like CLIP with user feedback in the form of box annotations to help users quickly locate images of interest in their data even in the long tail of harder queries. One key challenge for SeeSaw is that, in practice, many sensible approaches to incorporating feedback into future results, including state-of-the-art active-learning algorithms, can worsen results compared to introducing no feedback, partly due to CLIP's high-average performance. Therefore, SeeSaw includes several algorithms that empirically result in larger and also more consistent improvements. We compare SeeSaw's accuracy to both using CLIP alone and to a state-of-the-art active-learning baseline and find SeeSaw consistently helps improve results for users across four datasets and more than a thousand queries. SeeSaw increases Average Precision (AP) on search tasks by an average of .08 on a wide benchmark (from a base of .72), and by a .27 on a subset of more difficult queries where CLIP alone performs poorly.Comment: SIGMOD 2024 camera read

    Locality and compositionality in representation learning for complex visual tasks

    Full text link
    L'utilisation d'architectures neuronales profondes associée à des innovations spécifiques telles que les méthodes adversarielles, l’entraînement préalable sur de grands ensembles de données et l'estimation de l'information mutuelle a permis, ces dernières années, de progresser rapidement dans de nombreuses tâches de vision par ordinateur complexes telles que la classification d'images de catégories préalablement inconnues (apprentissage zéro-coups), la génération de scènes ou la classification multimodale. Malgré ces progrès, il n’est pas certain que les méthodes actuelles d’apprentissage de représentations suffiront à atteindre une performance équivalente au niveau humain sur des tâches visuelles arbitraires et, de fait, cela pose des questions quant à la direction de la recherche future. Dans cette thèse, nous nous concentrerons sur deux aspects des représentations qui semblent nécessaires pour atteindre de bonnes performances en aval pour l'apprentissage des représentations : la localité et la compositionalité. La localité peut être comprise comme la capacité d'une représentation à retenir des informations locales. Ceci sera pertinent dans de nombreux cas, et bénéficiera particulièrement à la vision informatique, domaine dans lequel les images naturelles comportent intrinsèquement des informations locales, par exemple des parties pertinentes d’une image, des objets multiples présents dans une scène... D'autre part, une représentation compositionnelle peut être comprise comme une représentation qui résulte d'une combinaison de parties plus simples. Les réseaux neuronaux convolutionnels sont intrinsèquement compositionnels, et de nombreuses images complexes peuvent être considérées comme la composition de sous-composantes pertinentes : les objets et attributs individuels dans une scène, les attributs sémantiques dans l'apprentissage zéro-coups en sont deux exemples. Nous pensons que ces deux propriétés détiennent la clé pour concevoir de meilleures méthodes d'apprentissage de représentations. Dans cette thèse, nous présentons trois articles traitant de la localité et/ou de la compositionnalité, et de leur application à l'apprentissage de représentations pour des tâches visuelles complexes. Dans le premier article, nous introduisons des méthodes de mesure de la localité et de la compositionnalité pour les représentations d'images, et nous démontrons que les représentations locales et compositionnelles sont plus performantes dans l'apprentissage zéro-coups. Nous utilisons également ces deux notions comme base pour concevoir un nouvel algorithme d'apprentissage des représentations qui atteint des performances de pointe dans notre cadre expérimental, une variante de l'apprentissage "zéro-coups" plus difficile où les informations externes, par exemple un pré-entraînement sur d'autres ensembles de données d'images, ne sont pas autorisées. Dans le deuxième article, nous montrons qu'en encourageant un générateur à conserver des informations locales au niveau de l'objet, à l'aide d'un module dit de similarité de graphes de scène, nous pouvons améliorer les performances de génération de scènes. Ce modèle met également en évidence l'importance de la composition, car de nombreux composants fonctionnent individuellement sur chaque objet présent. Pour démontrer pleinement la portée de notre approche, nous effectuons une analyse détaillée et proposons un nouveau cadre pour évaluer les modèles de génération de scènes. Enfin, dans le troisième article, nous montrons qu'en encourageant une forte information mutuelle entre les représentations multimodales locales et globales des images médicales en 2D et 3D, nous pouvons améliorer la classification et la segmentation des images. Ce cadre général peut être appliqué à une grande variété de contextes et démontre les avantages non seulement de la localité, mais aussi de la compositionnalité, car les représentations multimodales sont combinées pour obtenir une représentation plus générale.The use of deep neural architectures coupled with specific innovations such as adversarial methods, pre-training on large datasets and mutual information estimation has in recent years allowed rapid progress in many complex vision tasks such as zero-shot learning, scene generation, or multi-modal classification. Despite such progress, it is still not clear if current representation learning methods will be enough to attain human-level performance on arbitrary visual tasks, and if not, what direction should future research take. In this thesis, we will focus on two aspects of representations that seem necessary to achieve good downstream performance for representation learning: locality and compositionality. Locality can be understood as a representation's ability to retain local information. This will be relevant in many cases, and will specifically benefit computer vision where natural images inherently feature local information, i.e. relevant patches of an image, multiple objects present in a scene... On the other hand, a compositional representation can be understood as one that arises from a combination of simpler parts. Convolutional neural networks are inherently compositional, and many complex images can be seen as composition of relevant sub-components: individual objects and attributes in a scene, semantic attributes in zero-shot learning are two examples. We believe both properties hold the key to designing better representation learning methods. In this thesis, we present 3 articles dealing with locality and/or compositionality, and their application to representation learning for complex visual tasks. In the first article, we introduce ways of measuring locality and compositionality for image representations, and demonstrate that local and compositional representations perform better at zero-shot learning. We also use these two notions as the basis for designing class-matching deep info-max, a novel representation learning algorithm that achieves state-of-the-art performance on our proposed "Zero-shot from scratch" setting, a harder zero-shot setting where external information, e.g. pre-training on other image datasets is not allowed. In the second article, we show that by encouraging a generator to retain local object-level information, using a scene-graph similarity module, we can improve scene generation performance. This model also showcases the importance of compositionality as many components operate individually on each object present. To fully demonstrate the reach of our approach, we perform detailed analysis, and propose a new framework to evaluate scene generation models. Finally, in the third article, we show that encouraging high mutual information between local and global multi-modal representations of 2D and 3D medical images can lead to improvements in image classification and segmentation. This general framework can be applied to a wide variety of settings, and demonstrates the benefits of not only locality, but also of compositionality as multi-modal representations are combined to obtain a more general one
    • …
    corecore